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Abstract 

The U.S. government has issued numerous policies aimed at reducing federal 

facility energy consumption; the most recent, Executive Order 13514, requires that new 

construction designed after 2020 achieve net-zero energy by 2030.  The policy defines a 

Zero-Energy Building as one that is designed, constructed, and operated to reduce energy 

demand to a level which can be offset from sources of renewable energy.  This research 

develops and evaluates a feasibility assessment model based on life-cycle cost.  It 

incorporates geospatial analysis to calculate and summarize input values for all Air Force 

installations in the contiguous U.S..  A comparative analysis is then conducted to rank 

each installation in terms of the net-savings of constructing a Zero-Energy Building.  The 

ranking is performed for three facility types and then utilized to prove that there is a 

significant and direct rank correlation between them.  This conclusion allows follow-on 

feasibility assessments to be limited to those installations and facility types maximizing 

the likelihood of achieving a cost-effective Zero-Energy Building.  Finally, a strategy is 

recommended which will comply with federal net-zero energy policy, reduce facility 

operational costs, and ultimately allow for energy security and independence at Air Force 

installations.  
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1 

SUCCESSFULLY IMPLEMENTING NET-ZERO ENERGY POLICY THROUGH 
THE AIR FORCE MILITARY CONSTRUCTION PROGRAM 

 I. Introduction 

1.1. Background 

Buildings account for one third of the world’s energy consumption; in the U.S., 

that number is even higher at approximately 40 percent (National Science and 

Technology Council, 2008).  Buildings, at their current pace, are on track to become the 

largest consumer of energy in the world by 2025 (National Science and Technology 

Council, 2008).  With the cost of energy increasing and the world’s natural energy 

resources diminishing, nations across the world are placing increased emphasis on 

improving building energy performance.  The U.S. is one of the nations directing 

building energy performance improvements in both the public and private sectors.  The 

largest entity in the public sector, the U.S. federal government, operates over 500,000 

facilities with a total floor area of 3.1 billion square feet (Office of the Federal 

Environmental Executive, 2002 ; EERE, 2011).  Due to the fact that up to 80 percent of 

the life-cycle cost of a facility occurs after it has been constructed and that energy is a 

large portion of that cost, high-performance and sustainable buildings have the potential 

to dramatically reduce the budget required to operate federal facilities (National Science 

and Technology Council, 2008). 

This realization resulted in numerous laws and executive orders aimed at reducing 

the energy consumption of federal facilities.  One law and two executive orders are 

important to this research.  First, the Energy Policy Act of 2005 requires Federal 
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Agencies to provide facilities which are 30 percent more efficient than the most current 

version of American Society of Heating, Refrigeration, and Air Conditioning Engineers 

(ASHRAE) Standard 90.1 (Hutchison, 2010).  Next, Executive Order (EO) 13423 

requires federal agencies to utilize high-performance and sustainable building design 

principles.  The final, and most recent, is EO 13514 which strengthened the previous 

orders by requiring that new construction designed after 2020 is able to achieve zero-net-

energy by 2030 (The White House, 2009). Zero-net-energy is defined by the policy as a 

“building that is designed, constructed, and operated to require a greatly reduced quantity 

of energy to operate, meet the balance of energy needs from sources of energy that do not 

produce greenhouse gases, and therefore result in no net emissions of greenhouse gases 

and be economically viable” (The White House, 2009, p. 10).  The order urges that 

projects be prioritized based on life-cycle return on investment and use cost-effective and 

innovative strategies to achieve energy balance (The White House, 2009). 

Although EO 13514 applies to both new construction and renovation projects, this 

research will focus on new construction through the United States Air Force (USAF) 

Military Construction (MILCON) program.  The Air Force Center for Engineering and 

the Environment (AFCEE) manages the MILCON program and has been tasked to ensure 

compliance with EO 13514.  A recent reorganization has changed the name of AFCEE 

and made it a field operating agency of the USAF Civil Engineer Center, but because no 

guidance documents or regulations have been produced under its new name, this project 

will use AFCEE to represent both the new and old organizations.  The MILCON program 

is governed by Air Force Instruction (AFI) 32-1023 and is the process utilized by the 

USAF to provide new facilities to meet mission needs.  The program applies to new 
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construction on USAF installations costing more than 750,000 dollars.  In Fiscal Year 11, 

the USAF MILCON program consisted of 77 projects, totaling over 1.4 billion dollars 

(AFCEE, 2011). 

The current MILCON procurement process can be summarized into five main 

stages.  First, base programmers generate facilities requirements based on operational 

need (AFCEE, 2007).  These projects are subsequently prioritized by AFCEE and Major 

Commands using a formalized model (Dempsey, 2006).  Then, the prioritized list of 

projects is sent to Congress for authorization and appropriation (Department of the Air 

Force, 2010).  Once authorized, AFCEE develops an Acquisition Strategy for each 

project (AFCEE, 2007).  Finally, the projects are distributed to the designated design and 

construction agent for execution (Department of the Air Force, 2010). 

The main reason the current MILCON procurement process cannot implement 

Net-Zero Energy (NZE) construction practices is that there is currently no way to 

determine, without detailed design and energy modeling, whether a project can achieve 

cost-effective NZE.  Since Congress appropriates projects at a specific cost and scope, 

MILCON program managers must be able to adjust the scope and associated cost of 

NZE-capable projects prior to their being sent for appropriation.  Therefore, the 

identification of NZE-capable projects must occur early during the procurement process, 

not only due to Congressional appropriation restrictions, but also because that is when 

project alternatives with the greatest potential for savings can be identified. 
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1.2. Research Objective and Investigative Questions 

The objective of this research was to perform a Level 1 feasibility assessment of 

Net-Zero Energy (NZE) construction through the United States Air Force (USAF) 

Military Construction program.  A Level 1 feasibility assessment is conducted to provide 

sufficient information regarding a project’s technical and economic feasibility as to allow 

for a decision regarding follow-on analysis, while simultaneously minimizing the effort 

and cost necessary to obtain that information (EPA CHP Partnership, 2012).  This 

research will allow the USAF to limit more detailed and costly feasibility assessments to 

those installations which are the most likely to achieve cost-effective NZE. 

Upon reviewing literature and discussions with AFCEE, the following 

investigative questions arose and were addressed by this project: 

1. What amount of uncertainty would result from using energy use and 
construction premium data from the commercial facility sector to predict 
construction premium values for similar Department of Defense facility 
types? 

2. How well do the developed Construction Premium and Cost-Effective Net-
Zero Energy models corroborate with best-available understanding of their 
underlying concepts? 

3. What are the most critical elements of life-cycle cost in terms of obtaining 
quality estimates to predict the net-savings of a potential net-zero energy 
construction project? 

4. What is the uncertainty associated with calculating a deterministic value for 
the net-savings of a potential net-zero energy construction project from best-
available parametric estimates? 

5. Which CONUS installations will maximize the cost-effectiveness of potential 
net-zero energy construction projects? 

These investigative questions will assist the USAF in meeting the federal government’s 

direction to obtain Net-Zero Energy facilities by 2030. 
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1.3. Research Approach 

This research consisted of three phases.  In the first phase, a review of existing 

pertinent literature was conducted.  This phase was used to select a strategy for 

complying with Executive Order 13514, select a renewable energy resource and 

technology for incorporation into the feasibility assessment model, provide a 

comprehensive review of literature pertaining to Zero-Energy Buildings (ZEB), and 

provide justification for the selection of the elements in the feasibility assessment model.  

The second phase developed a mathematical model to assess the cost-

effectiveness of constructing a Net-Zero Energy (NZE) facility in the contiguous U.S. 

through the United States Air Force (USAF) Military Construction (MILCON) program.  

The model was developed in accordance with the life-cycle cost methodology developed 

by the Federal Energy Management Program for the economic evaluation of energy 

conservation, water conservation, and renewable energy projects.  The model was 

constructed using Hierarchical Function Decomposition, Systems of Equations, and 

Parametric Estimation.   

The developed model was then evaluated to determine how it responds to changes 

in input variable values, how well it corroborates with best-available understanding, and 

how much uncertainty it produces with best-available parametric estimates.  This 

evaluation was utilized to communicate the risk associated with making decisions based 

solely on the model’s output.  A component of the corroboration analysis was a 

comparative analysis of the incremental cost of energy efficiency improvements in 

commercial and Department of Defense facility types.   
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In the final phase, the model was utilized in an installation comparative analysis 

which ranked each USAF installation in terms of the cost-effectiveness of constructing a 

ZEB.  A geospatial analysis calculated and summarized all location-dependent model 

inputs for use during the comparative analysis.  Finally, a rank correlation analysis 

proved that there is a very strong and direct correlation of the installation rankings 

between facility types. 

This research effort aligned the USAF MILCON program with strategic 

objectives and will ensure that projects which are capable of achieving cost-effective 

NZE are executed appropriately.  A successful NZE strategy will reduce facility 

operational costs and ultimately facilitate energy independence and security at USAF 

installations. 

1.4. Assumptions and Limitations 

This research contains many assumptions and limitations which were made in 

order to scope and define the project.  Five assumptions were made to simplify the 

project in order to achieve a manageable scope.  Each is explained below. 

• It is common practice to assess the sustainability of organizations and projects 
using a framework with three pillars: People, Planet, and Profits; these are 
commonly coined the triple bottom line (Slapper & Hall, 2011).  For the 
military, energy security and independence are also important aspects to 
assess.  The benefits attributable to People, Planet, energy security, and 
energy independence are not included in the cost model for this project.  
Therefore, the benefit of achieving net-zero energy will only be accounted for 
through utility bill reduction. 

• Total project cost is typically accounted for through hard and soft costs.  Soft 
costs are those associated with planning, design, and coordination of a 
construction project.  This project only incorporates hard costs into the 
Incremental Construction Cost element.  For example, the contractors with the 
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experience and skills necessary to construct a Zero-Energy Building will 
likely demand a premium; this contracting premium was not been included in 
the cost model. 

• Projects under consideration will be designed, constructed, and maintained 
using energy performance metrics and the contractor selected to execute the 
project will be incentivized to minimize the facility’s energy use. 

• There is not enough data available for the energy use and incremental 
construction cost associated with Department of Defense facilities.  Because 
of this, this project assessed three commercial facility types as if they were 
constructed through the Military Construction program.  As will be proven 
during the Installation Comparative Analysis, facility type did not have a 
statistically significant impact on the ranking by cost-effectiveness. 

• This research did not include an increase in cost for the Photovoltaic (PV) 
System when all the panels cannot fit on the roof structure.  The unit cost of 
an installed PV system will increase when structures must be constructed in 
order to mount additional panels.  Although this will impact cost-
effectiveness, it will not impact installation ranking.  

• Economic assumptions were required to simplify the analysis of this project; 
the specific assumptions are provided in Table 11.  When these assumptions 
are changed, the resulting economic factors will change.  As these factors are 
only multipliers for costs and benefits, the relative difference in cost-
effectiveness will not change. 

This research also included six limitations which, if changed, will affect the 

ranking of installations in terms of a ZEB’s cost-effectiveness.  Each is explained below. 

• A strategy of on-site distributed generation was selected for this project as 
it maximized the goals outlined in Executive Order 13514 and energy 
security and independence at installations. 

• It was assumed that every installation will allow simple net-metering for 
potential net-zero energy facilities.  In practice, the extent of simple net-
metering is dependent on regional utility companies and state legislation. 

• Federal, State, and local incentives regarding renewable energy 
installation were not incorporated into the model as a benefit.  These 
incentives are constantly changing and are geospatial. 

• Site energy was the metric utilized to validate zero energy status.  If 
source energy were used for example, the ranking of installations could 
change as the site-to-source multiplier is geospatial. 
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• Without a detailed engineering design with energy profiles, it is not 
possible to quantify the true electricity bill reduction.  As the cost model 
assessed each construction project in its infancy, each installation’s 
average electricity rate was utilized.  In reality, installations have unique 
rate structures that will change the actual savings obtained.  

• The feasibility assessment model only provides a baseline design 
alternative which includes a PV system and specific energy efficiency 
measures (EEM).  A Flat-Plate PV System, mounted with a fixed tilt equal 
to the site’s latitude, is the most likely design option to cost-effectively 
offset the energy demand remaining after all technically and economically 
viable EEMs have been incorporated.  The EEMs included in the baseline 
design are those prescribed in the technical support documents of the 
American Society of Heating, Refrigeration, and Air conditioning 
Engineers’ 50 percent Advanced Energy Design Guides.  Additional 
design alternatives must be considered during the design phase to select 
the optimal renewable generator and EEMs. 

1.5. Preview of Subsequent Chapters 

This project follows the traditional five-chapter thesis format.  Chapter 2 provides 

a literature review as a foundation for the project.  Chapter 3 presents the research 

approach used to develop, evaluate, and apply the model.  Chapter 4 discusses the results 

from Chapter 3.  The final chapter presents the key findings of the research, discuss how 

the developed model should be utilized, and suggest future research endeavors. 
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II. Literature Review 

This chapter provides essential knowledge of Military Construction and Zero-

Energy Buildings.  It will also be utilized to select a strategy for complying with 

Executive Order 13514 and the renewable energy resource and technology which will be 

incorporated into the feasibility assessment model.  Finally, the literature review will 

describe each element and how it will be decomposed into the final research model.  The 

literature review will be divided into 10 main sections, each of which will provide an 

understanding of a particular aspect of the research. 

2.1. Military Construction Overview 

This section provides an overview of the Military Construction (MILCON) 

program.  It includes a discussion of the MILCON program’s purpose, provides a 

summary of the overarching procurement process, and presents insights into how the 

program could be utilized to implement net-zero energy (NZE) policy.   

The MILCON program is governed by Air Force Instruction (AFI) 32-1023 and is 

the process utilized by the United States Air Force (USAF) to provide new facilities to 

meet mission needs.  The program applies to new construction on USAF installations 

costing more than $750,000.  In Fiscal Year 11, the USAF MILCON program consisted 

of 77 projects totaling over $1.4 billion (AFCEE, 2011). 

The objective of the MILCON program is to provide facilities which “enable 

mission execution and enhance occupant safety and quality of life by providing 

sustainable facilities” (Department of the Air Force, 2010, p. 9).  All Air Force MILCON 
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projects are managed from design to beneficial occupancy by the Air Force Center for 

Engineering and the Environment’s (AFCEE) Capital Investment Management (CM) 

Division (AFCEE, 2011).  The CM division houses the MILCON Program Management 

Office, which is responsible for the management of all active USAF MILCON projects, 

with the exception of those located in contingency areas (AFCEE, 2011). 

The procurement process can be divided into five main stages.  In the first stage, 

projects are proposed based on operational need (AFCEE, 2007).  Once these projects are 

accepted by the Civil Engineering Work Request Review Board, they are programmed in 

the Automated Civil Engineer System (ACES) using a Defense Document (DD) Form 

1391.   

The next stage of the process requires that projects be prioritized.    This is a vital 

stage as the USAF must ensure maximum mission impact, given the fact that not all 

projects will receive funding.  AFCEE works with all stakeholders, especially the 

affected Major Commands, to prioritize the projects (Department of the Air Force, 2010).  

In the 1990s, USAF leadership centralized the MILCON program within the enhanced 

corporate structure (Dempsey, 2006).  The Integrated Process Teams (IPT) established 

under the new structure developed a MILCON scoring model to prioritize and 

recommend projects for funding (Dempsey, 2006).  The model is composed of four rating 

criteria: “[Major Command] MAJCOM priority (60 points), Investment Strategy Scoring 

Matrix (ISSM) (35 points), Corporate Panel Points (2 points), and MILCON IPT Factors 

(5 points)” (Dempsey, 2006, p. 21).   

In the third stage, MILCON projects receive funding, also known as appropriation 

from Congress.  All MILCON projects must be authorized by Congress prior to the 
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commencement of design and/or construction efforts (Department of the Air Force, 

2010).  Both the cost and scope of MILCON projects are provided to Congress via the 

DD Form 1391 (Department of the Air Force, 2005).  Once approved, funds are 

appropriated for each individual project, at a specific cost and scope (Department of the 

Air Force, 2010).  Authorization for a project expires two years after it has been approved 

by Congress or the start of the third fiscal year, whichever is earlier, and funds are 

available for five years (Department of the Air Force, 2010).  If the cost or scope of an 

appropriated project changes by more than 25 percent, Congress must be notified and the 

project must be reapproved (Department of the Air Force, 2005).  In 2009, the USAF 

implemented a policy, following changes to Title 10 U.S. Code 2853, that strictly limits 

the scope of a project to that indicated on the DD Form 1391 (Department of the Air 

Force, 2010). 

In the fourth stage, the development of an Acquisition Strategy occurs after the 

appropriation of projects by Congress.  A Project Acquisition Strategy is a strategic level 

roadmap which is used to guide the project toward a successful outcome (Creel & 

Ellison, 2008).  Figure 1 shows how the Acquisition Strategy fits into the broader risk 

management approach and how it is utilized to address the major risks associated with a 

project.   
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Figure 1 – Project Risk Management (Creel & Ellison, 2008) 

 

A good Acquisition Strategy must span the project’s life-cycle and focus on 

managing risk (Creel & Ellison, 2008).  Chapter 2 of the Defense Acquisition Guidebook, 

defines an Acquisition Strategy as “a comprehensive, integrated plan that identifies the 

acquisition approach, and describes the business, technical, and support strategies that 

management will follow to manage program risks and meet program objectives” 

(Defense Acquisition University, 2012, p. 46). 

The final stage occurs after an Acquisition Strategy has been developed and is 

when actual design and construction begins.  However, the Air Force has limited 

execution authority and must rely on Design and Construction Agents, such as the Navy 

Facility Engineering Command (NAVFAC) and Army Corps of Engineers (USACE) 

(Department of the Air Force, 2010).  Even though AFCEE will most likely not have 

execution authority for a specific project, the Program Management Plans agreed to, 

between it and the Design and Construction Agents, explicitly state that Project 

Acquisition Strategy alternatives must be considered jointly for each project (Nodjomian 

& Hemstreet, 2008).  Additionally, AFI 32-1023 states that AFCEE, as the Design and 

Construction Manager, will take the lead in developing these strategies. 
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This section has provided a brief discussion of the MILCON program and the 

overarching procurement process that the USAF follows to deliver new facilities in order 

to meet operational need and strategic objectives.  The understanding gained in this 

section illustrates how a strategy which incorporates multiple levels of feasibility 

assessments could be incorporated into the current MILCON procurement process.  This 

strategy would allow NZE-capable projects to be identified in their infancy and program 

managers to justify and then adjust their programmed cost and scope prior to 

appropriation from congress. 

2.2. Strategies to Comply with Federal Energy Policy and Strategic Goals 

This section provides a summary of Executive Order (EO) 13514 in an effort to 

uncover the intent of the policy.  It then discusses Department of Defense (DoD) strategic 

goals relating to installation and facility energy performance.  The potential strategies for 

complying with the EO will be presented and in conclusion, a comparison will be 

documented in order to select the strategy which maximizes the goals outlined in the EO 

and DoD policy. 

EO 13514 expands on the environmental performance and building energy 

efficiency requirements of prior EOs.  The stated objectives of the policy are to “create a 

clean energy economy that will increase our Nation’s prosperity, promote energy 

security, protect the interests of taxpayers, and safeguard the health of our environment” 

(The White House, 2009, p. 1).  The EO creates specific goals for all federal agencies 

regarding building energy efficiency, greenhouse gas emissions reduction, water 

conservation and protection, and solid waste reduction (The White House, 2009).  The 
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building energy efficiency goals require the implementation of high-performance and 

sustainable building design principles in order to design, construct, operate, maintain, and 

deconstruct sustainable facilities.  These goals strengthen EO 13423 by requiring that 

new facilities entering the design process in the year 2020 or later “are designed to 

achieve zero-net-energy by 2030” (The White House, 2009, p. 3). 

In addition to net-zero energy (NZE) policy, the DoD has developed its own goals 

regarding energy efficiency at military installations.  All services have developed energy 

efficiency and renewable energy initiatives, with the Army setting an aggressive goal of 

obtaining five net-zero installations by 2020 (Environmental and Energy Study Institute, 

2011).  A net-zero installation encompasses more than energy; the Army’s definition 

includes no net-exports of water or solid waste (Department of the Army, 2012).  The 

Army approach to net-zero installations is composed of the five step hierarchy illustrated 

in Figure 2. 

 

 
Figure 2 - Army Net-Zero Installation Approach (Department of the Army, 2012) 
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In May of 2010, the United States Air Force (USAF) energy plan released a 

vision statement, stating that personnel should make “energy a consideration in all we 

do” (Environmental and Energy Study Institute, 2011, p. 2).  The plan calls for a 

balanced mixture of on-base and off-base renewable energy generation (Environmental 

and Energy Study Institute, 2011).  The ultimate goals for the DoD energy initiatives are 

to increase both the energy security and independence of military installations while 

acting as a force multiplier in contingency locations (Environmental and Energy Study 

Institute, 2011).  Although not specifically stated, especially in the current fiscally 

constrained environment, another goal of NZE for both facilities and installations is to 

reduce the required operational energy budget. 

In July of 2010, the DoD and Department of Energy (DOE) signed a 

memorandum of understanding (MOU) to establish a framework for cooperation in 

meeting federal energy policy and initiatives (Poneman & Lynn, 2010).  The MOU is 

beneficial to both agencies as the DoD will benefit from the environmental and energy 

efficiency experts at the DOE, and the DOE will speed the development of energy 

efficiency technologies through the investment made by the DoD.  One example of the 

DoD leveraging the expertise of the DOE is illustrated in a report on the concept of Net-

Zero Energy Installations; these are defined as achieving “energy self-sufficiency based 

on minimized demand and use of local renewable energy resources”.  The report 

developed a methodology for the identification, assessment, and implementation of 

energy efficiency initiatives and is summarized in Figure 3. 
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Figure 3 - Flow Diagram of Net-Zero Energy Assessment and Implementation 

(Booth et al., 2010) 
 

The wording in EO 13514 of the requirement to construct facilities by 2020 to 

achieve zero-net energy by 2030, allows for phasing of a project to ensure it is cost-

effective.  For example, a facility could be designed to achieve NZE through a 

photovoltaic array, but the purchase of the array could be postponed until efficiency and 

cost improvements make the system economically viable.  The policy defines an NZE 

building as one that is “designed, constructed, and operated to require a greatly reduced 

quantity of energy to operate, meet the balance of energy needs from sources of energy 

that do not produce greenhouse gases, and therefore result in no net emissions of 

greenhouse gases and be economically viable” (The White House, 2009, p. 10).  This 

definition and the wording of the NZE goal provide the first and foremost step in any 

strategy for constructing a Zero-Energy Building, to reduce the energy consumption of 

facilities as low as economically feasible. 
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The second phase of a strategy to comply with EO 13514 is to obtain renewable 

energy to offset the demand remaining after all technically and economically practical 

energy efficiency improvements have been exhausted.  It is possible to obtain this energy 

through one, or a combination of, the three methods outlined in Table 1 (Torcellini, Pless, 

Deru, & Crawley, 2006). 

Table 1 - Comparison of Strategies to achieve NZE Objectives 

Strategies 
Clean 

Energy 
Economy 

Energy Security / 
Independence 

Taxpayer Interest / 
Budget Reduction 

Safeguard 
Environment 

Purchase  
Green Power 

Meets Does not meet Does not meet Meets 

Renewable  
Farms 

Meets Meets Meets Meets 

On-Site  
(Distributed  
Generation) 

Meets* Meets* Meets Meets 

* Maximizes 
 

The purchasing of green power is a viable option for most of the commercial 

sector and is currently being utilized by the USAF (Environmental and Energy Study 

Institute, 2011).  Although the purchase of green power would comply with policy, it 

does not increase energy security or independence, nor does it allow for net-zero energy 

installations.  Developing centralized renewable energy farms is another method for 

obtaining power from sources which do not produce greenhouse gasses.  This method 

takes advantage of economies of scale by utilizing larger and more efficient renewable 

energy generators (Department of Energy, 2011).  The main disadvantage of this method 

is that it requires a large development site and a significant capital investment. 



 

18 

 

The final method accomplishes NZE by utilizing on-site renewable energy 

generation (Griffith et al., 2007).  This method takes advantage of the un-utilized real 

estate of individual facilities.  This strategy requires that individual facilities incorporate 

renewable energy generators.  Since most renewable energy sources do not produce 

energy at all times, it is necessary to either store energy on-site or take advantage of 

distributed generation technologies (Interagency Sustainability Working Group, 2008).  

Due to the lack of cost-effective energy storage devices, distributed generation is by far 

the most popular solution (National Science and Technology Council, 2008).  Distributed 

generation ties the facility to the existing electrical grid, allowing it to export energy to 

the grid when excess is being produced and then import that same quantity of energy 

when the facility’s demand exceeds production capability.  A facility utilizing distributed 

generation and simple net-metering would be comprised of at least the components in 

Figure 4.  

 

 
Figure 4 – One-Line of Net-Metered Facility Components (Sandia National Labs, 

2007) 
 

 As required by the Institute of Electrical and Electronics Engineers (IEEE) 

Standard 1547, the inverter in this configuration must monitor the utility grid and 

disconnect when certain conditions exist (Sandia National Labs, 2007).  This 
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configuration also does not allow communication between the meter and utility system; 

as Smart Grid technologies increase, Smart Meters will be incorporated which allow for 

more efficient management of the grid (Sandia National Labs, 2007). 

As discussed in this section, the first and foremost step to achieving a ZEB is to 

reduce energy consumption as low as economically feasible.  The strategy selected to 

acquire the renewable energy requirement of EO 13514, will ultimately include a 

combination of centralized renewable energy farms and distributed generation methods.  

The specific combination of methods an installation will utilize should be based on 

economic analysis.  As this analysis is not available, and in order to scope this research, 

the distributed generation method has been selected for incorporation into a feasibility 

assessment model.   

Distributed generation allows for the division of required capital investment and 

requires minimal additional real estate, as many sources of energy can be arranged within 

a facilities footprint (Booth et al, 2010).  It also maximizes the energy security and 

independence of installations by dispersing the renewable energy generators (Scott, 

Holcomb, & Josefik, 2003).  Additionally, meeting NZE objectives through distributed 

generation lies at the heart of centralized control and decentralized execution, a principle 

which is fundamental to the success of aerospace operations (Department of the Air 

Force, 2011). 

2.3. Renewable Energy Resources at Air Force Installations 

This section provides an overview of renewable energy resources suitable for 

distributed generation at United States Air Force (USAF) installations.  It will then 
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discuss the technologies which could be utilized to harvest those resources.  A 

comparison of those resources and technologies is provided in Table 2. 

Table 2 - Summary of Potential Distributed Generation Technologies 

Technology 
(Resource) 

AF  
Adoption 

Proven for 
Distributed 
Generation 

Technology 
Reliability 

 

Base-load 
Power * 

 

Resource 
Coverage 

Binary Cycle 
(Hydrothermal) 

None 
 

No High High Low 

PV 
(Solar) 

High Yes High Medium High 

CSP 
(Solar) 

None No High Medium Low 

HAWT 
(Wind) 

Medium No Medium Low Medium 

* Without energy storage 
 

A renewable energy resource is defined as one which is available in the natural 

environment and has the ability to replenish through natural processes over time (EERE, 

2010).  The Department of Energy’s Energy Efficiency and Renewable Energy (EERE) 

office supports solar, wind, water, biomass, geothermal, and fuel cell renewable energy 

technologies (EERE, 2010).  Fuel cell technologies will not be discussed as they are 

energy carriers rather than producers (EERE, 2010).  Although these sources are 

renewable, they are not all clean.  Due to the Executive Order 13514’s restriction that 

sources cannot produce greenhouse gasses, biomass technologies will not be considered 

for this research.  A further technology restriction is present due to the decision to utilize 

distributed generation with power produced on-site.  This restriction eliminates water 

technologies from consideration, as the resource is not available within a facilities 

footprint.   
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A brief description of each remaining technology will be provided along with key 

characteristics such as reliability, power consistency, cost-effectiveness, location 

independence, and technology adoption. 

2.3.1. Geothermal Resource. 

Geothermal energy is heat energy generated by the earth (Kagel, Bates, & Gawell, 

2007).  This energy can be used directly in facilities, for purposes such as heating or 

cooling, or to produce electricity (Anderson, Antkowiak, & others, 2011).  Geothermal 

energy is a renewable resource which produces little to no greenhouse gas emissions and 

provides baseload power (Anderson, Antkowiak, & others, 2011); baseload power is 

defined as consistent power and reduces the need to incorporate energy storage solutions 

(Kagel, Bates, & Gawell, 2007).  There are numerous resource types which fall under 

geothermal energy, including coproduction, geopressured, and hydrothermal.  The most 

widely available resource suitable for on-site distributed generation is hydrothermal. 

Most power generated from hydrothermal resources is from high temperature 

wells; however, low temperature wells are the most common and they can be used to 

produce power (Anderson, Antkowiak, & others, 2011).  High temperature resources are 

typically utilized for utility scale power generation.  Low temperature resources, ones 

with temperatures between 80 and 150 degrees, “have the potential to be a viable solution 

for small to medium scale power generation needs” (Anderson et al., 2011, p. 25).   

Electricity generation from hydrothermal wells employ three main technologies: 

dry steam, flash steam, and binary cycle.  The technology utilized depends on the state 

and temperature of the fluid being utilized; binary cycle has shown the most promise for 
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producing power from low temperature wells (Kagel, Bates, & Gawell, 2007).  The main 

difference between binary cycle and dry or flash steam systems is that the fluid never 

contacts the turbine (Kagel, Bates, & Gawell, 2007).  The geothermal fluid is used to heat 

a secondary (binary) fluid, which has a much lower boiling point, through a heat 

exchanger (Kagel, Bates, & Gawell, 2007).  The heat transfer causes the secondary fluid 

to vaporize, which in turn drives the turbine and generates electricity.  Binary cycle 

power plants are closed-loop systems which produce no greenhouse gas emissions 

(Kagel, Bates, & Gawell, 2007).  

As discussed earlier, low temperature hydrothermal resource is the most widely 

available geothermal energy resource suitable for distributed generation.  However, the 

temperatures most suitable for power generation are mostly found in the western U.S, as 

shown in Figure 5. 
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Figure 5 - Hydrothermal Resources (Anderson et al., 2011) 

 

Hydrothermal power is often cost prohibitive to utilize for power generation.  In 

order to prove a hydrothermal resource exists, it must be explored and then drilled.  Once 

proven viable, infrastructure must be constructed to generate and distribute electricity.  

Additionally, geothermal wells are often in remote locations, significantly increasing this 

cost. 

2.3.2. Solar Resource. 

There are two main energy producing technologies which directly utilize solar 

resource.  Each will be discussed below. 
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2.3.2.1. Photovoltaic Technology. 

Photovoltaic (PV) technologies convert solar irradiance into direct current (DC) 

electricity using solid-state semiconductor devices (Anderson et al., 2011).  A variety of 

semiconductor materials are used in various types of PV cells; crystalline silicon is the 

most common.  Crystalline cells are commonly used as a benchmark of cost and 

conversion efficiency metrics during cell type comparisons (Anderson et al., 2011).  

All PV systems produce DC electricity. Therefore, in applications where 

alternating current (AC) electricity is used, an inverter is needed to convert the power 

generated by the system.  Inverters are solid state electronic devices with DC to AC 

conversion efficiencies near 95 percent (Anderson et al., 2011).  Most inverters include a 

maximum power point tracking (MPPT) function which operates the inverter to obtain 

peak power output throughout the day and year.  Due to these high efficiencies, 

converting DC power to AC power for use by the facility is most often more 

advantageous than locating and powering individual DC loads (Anderson et al., 2011). 

Solar radiation is a term used to describe the electromagnetic radiation emitted 

from the sun (DOE, 2011).  The technical and economical feasibility of utilizing the 

radiation depends on the total available resource.  The solar resource is the amount of 

solar radiation reaching the earth’s surface and is a factor of geographic location, time of 

the day, season of the year, geographic landscape, and weather (DOE, 2011).  Sunlight is 

reflected, refracted, and absorbed by a variety of particles in the earth’s atmosphere 

(DOE, 2011).  The radiation that has been scattered is termed diffuse; that which has not 

been diffused is known as direct beam.  The total solar radiation reaching the earth’s 
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surface is the sum of the diffuse and direct beam radiations.  PV technologies can utilize 

both of these forms of radiation.  Figure 6 shows the solar resource available to a flat-

plate latitude-tilt available across the US. 

The most common PV array for use as on-site renewable energy generation is the 

flat-plate panel affixed to the building’s roof structure (DOE, 2011).  These arrays 

achieve maximum efficiency when tilted to the site’s latitude (Marion & Wilcox, nd).  

Tracking arrays are more efficient, but must be analyzed on a case-by-case basis as they 

also weigh more and are more costly over their life-cycle.  Manufacturing and efficiency 

improvements have resulted in a reduction in system cost of one-third in the last year; 

installation costs have also decreased due to scale, learning curves, and increased 

competition (NREL, 2012).  The wide adoption has also improved the reliability of PV 

systems; analysts state the useful life of PV panels to be 20 to 40 years (NREL, 2012). 

 
Figure 6 - Solar Resource in the U.S. (EERE, 2012) 
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2.3.2.2. Concentrating Solar Power. 

Concentrating solar power (CSP) technologies use mirrors to reflect and 

concentrate sunlight onto receivers that collect solar energy and convert it to heat 

(Anderson et al., 2011).  These systems concentrate solar energy 50 to 10,000 times to 

produce high-temperature thermal energy.  This thermal energy can then be used to 

produce electricity via a steam turbine or heat engine that drives a generator (Anderson et 

al., 2011). 

CSP technologies have mostly been utilized for utility scale applications, but 

smaller CSP systems can be used in a distributed generation scheme (Anderson et al., 

2011)..  For example, a parabolic dish concentrator and engine system can produce 3 to 

25 kilowatts of power.  The modular nature of the systems make them well suited for 

distributed applications. 

Unlike PV, CSP technologies can only use direct beam insolation (Anderson et 

al., 2011).  Direct beam insolation occurs when the sun’s electromagnetic energy arrives 

unobstructed to the earth’s surface; during cloudy weather for example, this technology is 

not viable for producing electricity without the use of stored thermal energy.  CSP is a 

viable energy generator only when the direct beam insolation is greater than 6.75 kilo 

Watts per square meter per day (Anderson et al., 2011).  In the U.S., this restricts its use 

to the Southwest; Figure 7 shows direct beam solar resource throughout the southwestern 

US.  
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Figure 7 - Direct Beam Solar Resource in the Southwestern US (EERE, 2012) 

2.3.3. Wind Resource. 

Modern wind turbines are complex systems used to convert wind energy into 

mechanical energy, which is then converted into electrical energy by a generator (Wind 

Powering America, 2011).  Wind is a form of solar energy and is created by the uneven 

heating of the earth’s atmosphere.  Wind turbine generators convert wind energy into 

electricity via a direct drive generator or a planetary gearbox connected to and 

synchronized with the grid (Anderson et al., 2011).  For smaller turbines, DC to AC 

inverters are required to obtain grid-quality power (Anderson et al., 2011).   

There are two types of wind turbine technologies used to generate electricity.  

They are horizontal axis (HAWT) and vertical axis (VAWT).  Generally speaking, 
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HAWT are the most reliable and cost-effective of the technologies (Anderson et al., 

2011).  Only smaller HAWT turbines, below 100 kilo Watts, are suitable in a distributed 

generation scheme (Anderson et al., 2011).  Small turbines can vary widely in size and 

shape, with towers ranging from 1 to 40 meters and rotor diameters from 2 to 21 meters.  

There have been very few turbines designed and tested for use on commercial rooftops, 

and most companies who have tried have abandoned the technology in favor of more 

viable alternatives (Anderson et al., 2011).   

During the national wind resource assessment of the U.S., conducted in 1986 by 

the DOE, the U.S. was divided into grid cells (Pacific Northwest National Lab, 1986).  

Every grid cell was assigned a wind power class ranging from 1 to 6, with 6 being those 

with the most energy potential.  Each wind power class has a range of possible power 

densities which are likely to occur (Pacific Northwest National Lab, 1986).  Figure 8 

shows the wind power classifications across the U.S.. 

The power class values in Figure 8 are calculated assuming exposed sites and 

must be derated if the wind flow will be impeded (Pacific Northwest National Lab, 

1986).  For on-site installations, were the wind flow will be reduced, it is important to 

account for a loss in power.  As the wind velocity decreases, the power generated will 

decrease as the cube of the wind velocity (Anderson et al., 2011).  For example, if the 

wind velocity is reduced by one-half, then the power generated will be reduced by one-

eighth.  This effect has a profound impact on both the energy production and cost-

effectiveness of the wind turbine.  Department of Defense studies have shown that the 

cost of energy for distributed generation using wind turbines is more than 2.6 times the 

national average electricity rate (Anderson et al., 2011). 
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Figure 8 - US Wind Resource (EERE, 2012) 

 

Newer wind turbines are better designed and have lower installed and lifetime 

operations and maintenance (O&M) costs than machines deployed in the last decade. 

This is likely the reason that the cost of fixed O&M has declined by 40 percent in the last 

year; O&M is now in the 30 to 40 dollars per kilo Watt range (NREL, 2012).  An 

indication of the reliability of these turbines is included in assessments of their useful 

economic life.  Most turbines have a useful economic life of 20 years (NREL, 2012). 

This section has reviewed available renewable energy resources and discussed 

power generation technologies suitable for on-site distributed generation at USAF 

installations.  As shown in Table 2, wind and PV are the only renewable resources that 

are available at most USAF installations.  Additional justification for PV is provided by 
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observing each technology’s Cost of Energy (COE).  Table 3, modified to include only 

the technologies and sizes of interest, shows the installed and O&M costs to be lower for 

PV than wind (NREL, 2012).  An observation of current Zero-Energy Buildings (ZEB) 

provides final justification for the selection of PV as the renewable generator for the 

feasibility assessment model.  Each of the 21 current ZEBs has utilized PV technologies 

to generate the energy needed to offset their demand.   

Table 3 - Costs for Electric Generating Technologies (New Buildings Institute, 2012) 

Technology Mean installed cost 
($/kW) 

Fixed O&M 
($/kW-yr) 

Expected  
Useful Life 

Solar PV 10 – 100 kW  $4,425  $26  25 - 40 
Solar PV 100 – 1,000 kW  $3,671  $24  
Wind 10 – 100 kW  $6,066  $44  20 
Wind 100- 1000 kW  $3,567  $38  

 

2.4. Net-Zero Energy Overview 

This section provides a background of Zero-Energy Buildings (ZEB) and 

justification for the selection of a definition of net-zero energy (NZE) for this research 

project.  It will then summarize the current and expected market for ZEBs in the 

construction industry.  Finally, it will address some pertinent lessons learned from NZE 

case studies. 

The concept of a NZE building involves significantly reducing energy 

requirements through the use of energy efficiency technologies and designs such that the 

remaining energy needs can be offset by renewable technologies (Torcellini, Pless, Deru, 

& Crawley, 2006). ZEBs are not a new concept; civilizations throughout history have 

constructed facilities which do not need outside energy sources to function.  The 
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challenge arises when trying to meet our society’s indoor environmental comfort 

expectations, while simultaneously reducing energy consumption.  These challenges are 

being addressed by government policies around the globe, which are promoting high 

performance and sustainable facilities.  One noteworthy leader in government support for 

NZE construction is the European Union.  Its Energy Performance of Buildings Directive 

will require nearly zero energy buildings in the public sector by 2019 and in all 

construction by 2021 (Pike Research, 2012). 

Although NZE construction has seen conservative growth, recent studies have 

shown that it will grow rapidly and aggressively in the coming decades, mainly due to 

technological innovations and the increasing cost of energy (Pike Research, 2012).  The 

revenue from zero-energy buildings is expected to grow worldwide over the next 20 

years and is expected to reach $690 billion by 2020 and nearly $1.3 trillion by 2035 (Pike 

Research, 2012). 

To achieve success in the construction of a ZEB, it is necessary to clearly state 

which definition of zero-energy will be used for the project.  The definition chosen will 

have a dramatic impact on the design strategy used to achieve success (Torcellini, Pless, 

Deru, & Crawley, 2006).  There are four well documented definitions of NZE.  They are 

source, cost, site, and emissions; each will be discussed below. 

The first definition is Net-Zero Source.  A Net-Zero Source building is one that 

uses as much energy over a year as it produces, when accounted for at the source 

(Torcellini, Pless, Deru, & Crawley, 2006).  When accounting for energy at the source, it 

is necessary to use site-to-source multipliers to account for the prime energy required to 

transport, produce, and deliver the power (Griffith, Long, Torcellini, & Judkoff, 2007).  
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Site-to-source multipliers are commodity and location dependent, but the national 

average for electricity is 3.37 to 1 (Torcellini, Pless, Deru, & Crawley, 2006).  This 

means that it takes 3.37 units of prime energy, such as coal, to produce one unit of 

electricity at the building’s site.  Using this definition of NZE requires the conversion of 

energy consumed; each energy commodity must be converted, and in some situations 

multiple site-to-source multipliers may be required for each commodity.  This definition 

is sensitive to the fluctuation of site-to-source multipliers (Torcellini, Pless, Deru, & 

Crawley, 2006). 

The second definition is Net-Zero Cost.  A Net-Zero Cost facility is one where the 

payment for exported energy is equal to the energy purchased, when accounted for over a 

year (Griffith, Long, Torcellini, & Judkoff, 2007).  Zero cost is very difficult to obtain 

since utility companies typically pay much less for power imported to the grid than they 

charge for power consumed from it (Torcellini, Pless, Deru, & Crawley, 2006).  Defining 

NZE in terms of cost also creates uncertainty in the verification of zero energy, as energy 

prices are continuously changing (Griffith, Long, Torcellini, & Judkoff, 2007).  

Additionally, the prices of energy commodities have typically escalated faster than 

general inflation, meaning that it will be increasingly more difficult to maintain ZEB 

status in the years following construction (Rushing, Kneifel, & Lippiatt, 2011). 

The third definition is Net-Zero Site.  A Net-Zero Site facility is one where the 

sum of energy imported to the facility is equal to the energy exported from it when 

accounted for at the site.  This definition is easier to manage as no calculations are 

necessary to convert to source energy (Griffith, Long, Torcellini, & Judkoff, 2007).  

Accounting for energy at the building site means that all energy types are accounted for 
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at a one to one ratio.  Site ZEBs have the fewest fluctuations in achieving zero energy, as 

this definition provides the most repeatable and consistent metric.  For this reason, most 

research in NZE has used this definition for analysis (Griffith, Long, Torcellini, & 

Judkoff, 2007 ; New Buildings Institute, 2012). 

The final definition is Net-Zero Emissions and is defined as a building using as 

much energy from emissions-producing sources as it does from emissions-free sources 

(Torcellini, Pless, Deru, & Crawley, 2006).  This definition allows for the purchase of 

green power and the achievement of an off-site ZEB (Torcellini, Pless, Deru, & Crawley, 

2006).  The main advantage of a Net-Zero Emissions building is that it strives to 

minimize its environmental impact.  The concern with utilizing this definition is that it 

creates a metric which will fluctuate and that it also requires computations similar to Net-

Zero Source (Torcellini, Pless, Deru, & Crawley, 2006). 

As alluded to in the Net-Zero Emissions definition, it is possible to achieve either 

an on-site or off-site NZE building.  The best strategy is dependent on economic analysis 

and strategic objectives, but most commercial NZE buildings use on-site renewable 

energy generators in a distributed generation scheme (New Buildings Institute, 2012).  

Creating a stand-alone NZE building, one that is not connected to the utility grid, requires 

either over-sizing the renewable energy generator or storing power on-site.  Except in 

isolated facilities, both of these will negatively impact the life-cycle economics of the 

project.   

By utilizing commercially available and off-the-shelf technologies, it is possible 

to reduce the energy consumption of a facility by 30 to 50 percent (National Science and 

Technology Council, 2008).  Those same technologies, if designed using a holistic and 
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collaborative effort, can reduce energy consumption by up to 70 percent (National 

Science and Technology Council, 2008).  As shown in Figure 9, once energy demand has 

been reduced, it becomes possible to offset that demand with renewable energy sources.  

Figure 10 shows the average percent energy savings required to achieve NZE for certain 

commercial facility types. 

 

 
Figure 9 – Approach for Achieving NZE Buildings (National Science and 

Technology Council, 2008) 
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Figure 10 – Percent Energy Savings to Reach ZEB Goal (Griffith, Long, Torcellini, 

& Judkoff, 2007) 
 

A report produced in 2007 by the National Renewable Energy Lab (NREL) 

concluded that 62 percent of the commercial building sector is capable of reaching NZE 

status (Griffith, Long, Torcellini, & Judkoff, 2007).  This study is supported in practice 

by 21 existing ZEBs in the U.S. (New Buildings Institute, 2012).  A 2012 study 

conducted by the New Buildings Institute (NBI) discovered 60 facilities in the U.S.  that 

are either NZE or have low enough energy use to be capable of achieving NZE.  A key 

conclusion of the study found that NZE buildings are uncommon, but growing in both 

number and complexity.  The study also concluded that reducing energy levels to those 

required for NZE are obtainable at a reasonable incremental cost. 

There are a limited number of case studies available for NZE buildings, but they 
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provide valuable insight into best practices.  One common conclusion from these studies 

is that there is a necessity for the incorporation of computer simulations into the design 

process.  Each of the facilities that successfully reached NZE used whole-building 

computer simulations to optimize the building’s energy performance and account for 

interactions among building systems (Torcellini, Deru, Griffith, Long, Pless, & Judkoff, 

2004 ; New Buildings Institute, 2012).  However, just incorporating energy modeling 

does not ensure success.   

It has been shown that many energy models fail to accurately predict energy use 

because engineers were too optimistic in developing assumptions (Torcellini, Deru, 

Griffith, Long, Pless, & Judkoff, 2004).  To maximize the benefit of the whole-building 

simulations and achieve the deep energy reductions necessary for NZE, an integrated 

design approach, one that includes all stakeholders, must be utilized (New Buildings 

Institute, 2012).  Another observation similar to the integrated approach is that design 

teams which set energy performance metrics as a high priority early in the design 

process, will produce buildings with lower energy consumption than teams which do not 

(Torcellini et al, 2004).   

Another common conclusion of the reports relates to the operation of the facility.  

Occupant behavior is a significant barrier to a high-performance building performing as 

designed and achieving consistent ZEB status (Torcellini et al, 2004).  As NZE buildings 

become larger and more complex, occupant behavior and subsequent plug-loads must be 

regulated (New Buildings Institute, 2012).  During the operations phase of a high-

performance building’s life-cycle, maintaining maximum energy performance is a 

constant effort (Torcellini et al, 2004).  Many of the studied facilities did not incorporate 
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this constant monitoring and subsequently suffered reduced energy savings (Torcellini et 

al, 2004).  Smart Building technologies can assist with regulating power requirements, 

but a life-cycle cost analysis should be conducted before incorporating them into the 

design.   

Additional conclusions regarding NZE buildings can be drawn from looking at 

the National Renewable Energy Laboratory’s (NREL) recently completed Research 

Support Facility (RSF).  The RSF project was extremely complicated as the DOE was 

pursuing a goal of demonstrating that high-performance and NZE construction is 

currently a commercially viable option, not just a dream for the future (Department of 

Energy, 2011).  The NREL’s RSF facility is currently the largest net-zero energy building 

in North America; at 360,000 square feet, it provides a comfortable workspace for over 

800 employees (Department of Energy, 2011).  The project is viewed as an 

overwhelming success by the industry; it has received extensive press coverage and 

awards from organizations such as the American Institute of Architects and the American 

Institute of Steel Construction (Department of Energy, 2012).  The project met all the 

goals set for it, including a Leadership in Energy and Environmental Design (LEED) 

Platinum rating with maximum points attained for energy use (Department of Energy, 

2011).  The project was also completed on schedule and below its $64 million budget 

(Department of Energy, 2011).  Even with all the innovative solutions required to achieve 

an Energy Use Intensity of 10,250 kilowatt hours per square foot per year, the facility 

cost of $254 per square foot is well below the average LEED certified building cost of 

$335 per square foot (Department of Energy, 2011).  

This section has provided an understanding of net-zero energy and an indication 
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of the current status of ZEBs in the construction industry.  It has also provided the 

definitions often used in analyzing NZE, providing the justification for the selection of 

Net-Zero Site for this research project. 

2.5. Life-Cycle Cost Analysis for Facility Energy Projects 

This section will define what costs are typically associated with the term, Life-

Cycle Cost (LCC).  It will then provide an overview of common facility LCC models.  

Finally, it will describe how LCC can be used in a decision framework, such as 

Economic Analysis, to identify the most cost-effective alternative for a project. 

LCC is defined in the Life-Cycle Costing Manual (LCCM) as the total cost of 

owning, operating, maintaining, and disposing of a facility (Fuller & Peterson, 1995).  

The general formula for the present value of all costs and benefits occurring during a 

facilities life-cycle is shown in Equation 1 (Fuller & Peterson, 1995). 

 

𝐿𝐶𝐶 =  �
𝐶𝑡

(1 + 𝑑)𝑡

𝑁

𝑡=0

 
(1) 

where Ct is the sum of all relevant costs occurring in year t, N is the total number of years 

in the study, and d is the discount rate.   

A simplified equation for determining the LCC of building-related projects is 

given by Equation 2 (Fuller & Peterson, 1995). 

𝐿𝐶𝐶 = 𝐼 + 𝑅𝑒𝑝𝑙 − 𝑅𝑒𝑠 + 𝐸 + 𝑊 + 𝑂𝑀&𝑅 (2) 

where I is the present value of investment costs, Repl is the present value of capital 

replacement costs, Res is the present value of residual values minus disposal costs, E is 
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the present value of energy costs, W is the present value of water costs, and OM&R is the 

present value of nonfuel operations, maintenance, and repair costs.  The definition 

represented by Equation 2 utilizes present worth factors, provided in the annual 

supplement to the Federal Energy Management Program (FEMP), which significantly 

reduces the computational effort required during analysis (Fuller & Peterson, 1995).  

Using economic factors enables all reoccurring costs or benefits to be expressed as a 

single variable. 

LCC has little value until it is used in a decision-making framework; this is 

commoly referred to as Life-Cycle Cost Analysis (LCCA) (Fuller & Peterson, 1995).  

LCCA is a tool under the more broad approach of Economic Analysis (EA).  Both LCCA 

and EA are used to evaluate project alternatives to select the one which provides the 

greatest benefit (NAVFAC, 1993). 

The Naval Facilities Command Economic Analysis Handbook provides a six-step 

approach which identifies the essential elements of any economic analysis; a similar 

approach is outlined in the LCCM.  A summary of the six steps are provided below, 

nomenclature has been modified to more directly align with this project (NAVFAC, 

1993): 

1. Define the requirements 

2. Formulate viable alternatives 

3. List economic assumptions 

4. Select and modify an appropriate life-cycle cost model 

5. Incorporate cost-effectiveness supplementary measure 

6. Perform sensitivity analysis 
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Step four of the EA framework incorporates a supplementary metric which 

enables the identification and selection of the most cost-effective alternative design.  As 

this project is concerned with whether it is cost-effective to design and construct a Zero-

Energy Building versus a minimally-energy-policy-compliant facility, only two designs 

need to be evaluated.  An accept or reject decision relates to the economic evaluation of a 

project having a single alternative system option which is under consideration (Fuller & 

Peterson, 1995).  The mutually exclusive alternative must be evaluated against a base 

case, generally a continuation of an existing solution, also referred to as the status quo 

case (Fuller & Peterson, 1995).  This type of analysis is referred to as relative, as the 

resulting values only have meaning when they are compared to the base case values 

(Fuller & Peterson, 1995).   

When evaluating an accept or reject decision, the following criteria are generally 

used (Fuller & Peterson, 1995): 

1. LCC less than base case 

2. Net savings (NS) greater than 0 

3. Savings to investment ratio greater than 1 

4. Adjusted internal rate of return greater than Discount Rate 

 

NS is typically utilized when benefits occur primarily in the form of future operational 

cost reductions.  The NS of an alternative relative to the base case is given by Equation 3 

(Fuller & Peterson, 1995). 

𝑁𝑆 = 𝐿𝐶𝐶𝐵𝑎𝑠𝑒 − 𝐿𝐶𝐶𝐴𝑙𝑡𝑒𝑟𝑛𝑎𝑡𝑖𝑣𝑒 (3) 
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If the NS is greater than 0, the alternative is considered cost-effective and should be 

selected (Fuller & Peterson, 1995).  Both NS and LCC methods provide identical 

solutions and can be used interchangeably.  The most significant advantage of utilizing 

the NS metric is that the costs and/or benefits which are identical between the base and 

alternative systems will cancel and can therefore be omitted from the LCC calculation 

(Fuller & Peterson, 1995).  Since similar costs cancel using the NS metric, only the costs 

and/or benefits which are different must be included in the fundamental equation.  

This section has provided an understanding of the typical cost elements discussed 

in an LCCA.  It has also outlined some of the key steps which are fundamental to any 

solid Economic Analysis.  The LCCA utilizing the supplementary NS metric is one of the 

methodologies which will be utilized by this research. 

2.6. Cost Estimation Techniques 

This section will justify the need for accurate cost estimates as a part of any Life 

Cycle Cost Analysis (LCCA) and outline the most common approaches to obtain those 

estimates.  A discussion of the benefits and limitations of each approach will lead to the 

selection of the estimation technique which will be used by this research.     

Obtaining and utilizing accurate estimates for all costs and benefits included in an 

LCCA is vital to the accuracy of results (New South Wales Treasury, 2004).  There are 

three main methods for estimating cost elements: Engineering, Analogous, and 

Parametric (NAVFAC, 1993 ; New South Wales Treasury, 2004).   

An engineering estimate is a consolidation of multiple detailed cost estimates into 

a total system cost (NAVFAC, 1993).  It is often called a “bottom-up” estimate as it 
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separates the total estimate into components.  This estimating method is the most 

accurate, but relies on having a detailed design upon which to base the individual 

estimates.   

The analogous method is similar to the engineering method except it utilizes 

historical data to obtain estimates of components within the larger system or product 

(New South Wales Treasury, 2004).  This method again relies on the availability of 

detailed designs.   

Early in a project’s life-cycle, the detailed designs required for the above 

estimation techniques will not be available; therefore, estimates must be obtained using a 

parametric cost estimating method (NAVFAC, 1993).  The parametric cost method 

utilizes historical data and characterizes it in terms of known parameters (New South 

Wales Treasury, 2004).  The available cost data “from existing cost analyses are used to 

develop a mathematical regression or progression formula that can be solved for the cost 

estimate required” (New South Wales Treasury, 2004, p. 8).  Regression analysis 

provides an indication of the uncertainty contained in the estimate.  This uncertainty in 

input data is important in any economic analysis and is a basis for conducting sensitivity 

and uncertainty analysis of the cost model’s outputs. 

This section has discussed three methods of cost estimation in an LCCA.  It also 

highlighted the need, due to the infancy of projects being evaluated, for utilizing 

parametric estimation techniques for this research project. 
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2.7. Decomposition as a Model Building Tool 

As discussed in Chapter 1, this research will develop a feasibility assessment 

model based on life-cycle cost.  Decomposition is a technique which can be utilized to 

divide a complex entity into simpler and more manageable parts.  This section will define 

common approaches to decomposition and discuss how they could be utilized as part of a 

model development methodology.  The section will conclude with the selection of a 

decomposition approach for this research. 

Functional decomposition is a process of resolving a functional relationship into 

subsequent parts in such a way that the integrity of the original function is maintained.  In 

general, the process of decomposition is undertaken for the purpose of gaining insight 

into the identity and relationship of the function’s fundamental components (Functional 

Decomposition, 2012).  The process is inherently hierarchical, as subsequent equations 

are typically decomposed further until the desired relationships are uncovered.  The goal 

of the decomposition, in the context of model building, is to obtain independent and 

predictable variables.  Hierarchical function decomposition is similar to a work 

breakdown structure (WBS) and Cost Breakdown Structure (CBS). 

A WBS is widely used in project management and systems engineering 

disciplines and is the division of a project into smaller components.  It is undertaken to 

identify discrete work packages which can be used for scheduling and scoping purposes 

(Department of Defense, 2011).  In project management, the WBS is developed by 

dividing the objective of the project into manageable components in terms of size, 

duration, and responsibility; these components include all necessary activities to achieve 
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the project’s objective (Department of Defense, 2011).   

A CBS is widely used in economic evaluations and is undertaken to identify, 

define, and organize all cost elements to be considered in an LCCA (New South Wales 

Treasury, 2004).  A CBS identifies all relevant cost categories, at the appropriate timing, 

in the project’s life cycle (New South Wales Treasury, 2004).  Cost categories are 

subsequently divided until each cost elements can be accurately estimated (New South 

Wales Treasury, 2004). 

Work and cost breakdowns develop elements, that when summed, equal the total 

cost of the original project or system.  The main advantage of function decomposition 

over a WBS or CBS is that it allows for multiple mathematical operators to be included in 

the model.  This fact is important in this research because addition, subtraction, 

multiplication, and division relationships must be maintained in the final equation. 

This section has discussed the process of decomposition and outlined common 

approaches utilized to conduct it.  The justification has been provided for the selection of 

Hierarchical Function Decomposition as a part of the research approach for this project. 

2.8. Model Evaluation Techniques 

This section will justify the need for model evaluation as part of the development 

process.  It will highlight three common techniques used to evaluate and communicate 

the risk associated with making decisions based solely on the deterministic output of a 

model. 

As stated by the NRC Committee on Models in the Regulatory Decision Process, 

“models will always be constrained by computational limitations, assumptions, and 
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knowledge gaps.  They can best be viewed as tools to help inform decisions rather than as 

machines to generate truth or make decisions...model evaluation (must) be viewed as an 

integral and ongoing part of the life cycle of a model” (Council for Regulatory 

Environmental Modeling, 2009, p. 19).  Model evaluation is defined by this committee 

as, “the process used to generate information to determine whether a model and its 

analytical results are of a quality sufficient to serve as the basis for a decision” (Council 

for Regulatory Environmental Modeling, 2009, p. 19). 

To determine if a model produces results of sufficient quality for the given 

decision environment, an understanding must be gained with regard to the uncertainties 

of the model (Council for Regulatory Environmental Modeling, 2009).  Four approaches 

are commonly used to gain this understanding: expert opinion, sensitivity analysis, 

corroboration, and uncertainty analysis (Council for Regulatory Environmental 

Modeling, 2009).  Expert opinion has not been included in this research, the remainder 

are described below. 

Sensitivity analysis, is conducted to understand how a change in a dependent 

variable will affect the model’s output (Fuller & Peterson, 1995). “Sensitivity analysis is 

recommended as the principal evaluation tool for characterizing” how critical variables 

are to the uncertainty of the model’s output (Council for Regulatory Environmental 

Modeling, 2009, p. 31 ; Fuller & Peterson, 1995).  Relative sensitivity analysis is a 

deterministic approach to rank variables in terms of the need for quality data (Fuller & 

Peterson, 1995).  One common approach to examine relative sensitivity is to conduct a 

one-at-a-time (OAT) analysis (Council for Regulatory Environmental Modeling, 2009).  

An OAT analysis is performed in four simple steps (Fuller & Peterson, 1995): 
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1. Select a base case for dependent variables. 
 

2. Vary each variable by a given percentage, for example 10%, while holding all 
other variables constant. 
 

3. Recalculate the model output for each change 
 

4. Analyze the resulting changes 
 

Corroboration is an evaluation of how closely a model aligns with reality (Council 

for Regulatory Environmental Modeling, 2009).  Corroboration can be performed using 

both qualitative and quantitative methods.  Qualitative methods are used in situations in 

which quality data does not exist.  This method, for example, would use expert opinion to 

obtain validation that the model agrees with the best-available understanding, and 

eventually move the model toward consensus (Council for Regulatory Environmental 

Modeling, 2009).  Quantitative methods, on the other hand, use statistics to calculate how 

closely the model correlates to measured or observed data points (Council for Regulatory 

Environmental Modeling, 2009). 

The final approach to model evaluation is uncertainty analysis. As previously 

discussed, it is essential to provide an estimate of the uncertainty of the model’s output.  

When a model is used in the appropriate niche, there are two fundamental sources of 

model uncertainty: framework uncertainty and data quality (Council for Regulatory 

Environmental Modeling, 2009).  Framework uncertainty is related to the understanding 

of the model’s underlying relationships. In this project, framework uncertainty is 

minimal, as the fundamental topics are well understood.  Data quality is affected by both 

uncertainty and variability.  Data quality is related to the imprecision of variable 

estimates, typically attributable to measurement error and limited sample sizes, while 
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data variability results from the natural randomness of model elements due to 

heterogeneity (Council for Regulatory Environmental Modeling, 2009).  Both of these 

sources of data quality reduction exist in this research, although variability is more 

prevalent due to the parametric estimation technique utilized. 

In order to perform a quantitative uncertainty analysis, the probability 

distributions of each uncertain input variable must be specified (Hammonds, Hoffman, & 

Bartel, 1994).  The distributions may be driven by available data, but most often 

subjective judgment must be “used to reflect the degree of belief that the unknown value 

for a parameter lies within a specified range” (Hammonds, Hoffman, & Bartel, 1994, p. 

10).  The two distributions utilized during this research are the normal and triangular.   

When the uncertainty in a variable is present due to the summation of uncertain 

parameters, the distribution of that variable will tend to conform to a normal distribution, 

regardless of the probability distributions of the underlying parameters (Hammonds, 

Hoffman, & Bartel, 1994).  This property is known as the central limit theorem. The 

normal distribution is provided in Figure 11 and random variates from this distribution 

are easily created using the Random Number Generator in Microsoft Excel. 

When there is little data available for a variable, but the range of values and their 

central tendency is known, the triangular distribution can be used to model the 

distribution (Hammonds, Hoffman, & Bartel, 1994).  Figure 12 graphically depicts a 

triangular probability distribution.  When a random number between zero and one, 

denoted as U, is known, Equation 4 can be utilized to generate random variates from the 

triangular distribution (Triangular Distribution, 2013). 
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Figure 11 – Normal Distribution 

 

 
Figure 12 – Triangular Probability Density Function (Triangular Distribution, 

2013) 
 

 

(4) 
 

where F(c) = (c-a)/(b-a).  
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 In general, as long as the mean and variance of a distribution are held constant, 

the exact shape of that distribution will have a minimal effect on the confidence interval 

of the model’s output (Hammonds, Hoffman, & Bartel, 1994).  This particularly holds 

true when no single input dominates the overall uncertainty of the model.   

Uncertainties are inherent to model building, identifying and communicating 

those that significantly impact the model’s output, is key to making good decisions 

(Council for Regulatory Environmental Modeling, 2009).  The most popular and 

powerful method for determining the impact of data uncertainties is Monte Carlo 

simulation.  In this approach, the model is repeatedly run using randomly sampled input 

values from the probability distribution of the variable’s estimate (Hammonds, Hoffman, 

& Bartel, 1994).  Monte Carlo simulation uses multiple input scenarios to generate 

multiple output values; the set of output values can then be characterized quantitatively 

using descriptive statistics (Risk Assessment Forum, 1997).  The analysis is performed in 

a few steps (Clemen & Reilly, 2001).   

• Code the model into a computer-based simulation tool.   

• A random input value for each of the variables being studied is selected from 
their respective probability distributions.  

• The model’s output to each case is then be calculated and stored.   

• The prior two steps are repeated until the desired number of simulations have 
been completed, typically 10,000.   

• Finally, descriptive statistics are utilized to portray output uncertainty.  
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2.9. Incorporating Geospatial Analysis 

This section will discuss the basics of Geospatial Analysis.  It will define what a 

Geospatial Information System (GIS) is and highlight which tools and techniques will be 

utilized by this research.  

A GIS is designed to capture, manipulate, and display spatially related 

information on a map for visualization and analysis (ESRI, 2010).  It has three integrated 

components: graphics program, database, and tools (ESRI, 2010).  The graphics program 

draws shapes on a map for visualization.  The database stores and links information, 

while the tools allow that information to be manipulated, analyzed, and stored.   

Information is stored in the form of features and attributes (ESRI, 2010).  Features 

represent natural or manmade objects on the earth’s surface, while attributes describe 

those features.  Features can be represented by points, lines, or polygons (ESRI, 2010).  

All features must have a location specified to display properly or to be analyzed using the 

tools of a GIS.  Features can also be represented as a vector or raster file (ESRI, 2010).  A 

vector uses shapes to define a feature and then uses coordinates to specify its location.  

This type of representation is useful for displaying features with distinct boundaries.  The 

raster method of data storage is used to represent continuous information, that which does 

not have distinct boundaries or a well-defined shape (ESRI, 2010).  A raster file is 

divided into cells, each of which contains a value that is of importance to the analysis 

being conducted (ESRI, 2010).  Every raster file has an origin which defines its location 

on earth and each cell contains a unique position relative to that origin (ESRI, 2010). 

  



 

51 

Analyzing features is a primary function of a GIS (ESRI, 2010).  Geospatial 

analysis utilizes the tools available in GIS to manipulate, store, and manage information. 

One of the benefits of geospatial analysis is that new datasets are created from existing 

ones, meaning that the new information can be used to solve problems (ESRI, 2010).  

The tools which will be used for this project and a brief description of each are discussed 

in the remainder of this section. 

The Clip tool is used to define an area of interest or to remove data points which 

are not of interest to the current analysis (ESRI, 2010).  It functions by using features in 

another feature class as a template from which to extract data points (ESRI, 2010).  The 

tool is commonly used to create a new feature class which “contains a geographic subset 

of the features in another, larger feature class” (ESRI, 2010, p. na). 

The Merge tool combines two or more line or polygon features of the same layer 

into one feature.  During the operation, the analyst selects which attributes will be 

preserved.  If the features being merged are not adjacent, a multipart feature is generated.  

The Join Field tool combines the contents of one table to another table, using a 

common attribute field (ESRI, 2010).  After the operation, the input table will contain the 

selected fields from the join table.  The analyst defines which fields will be included.  

The tool functions by matching the records in the Input Table to those in the Join Table.  

The Intersect tool calculates the geometric intersection of two or more feature 

classes (ESRI, 2010). The features that are common to all layers will be written to a new 

feature class (ESRI, 2010). 
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The Feature to Point tool creates a feature class containing points generated from 

the representative locations of input features (ESRI, 2010).  If the inside option is not 

selected, the point resulting from a polygon will be located at the polygon’s center of 

gravity. 

The Inverse Distance Weighting (IDW) tool is a method used to interpolate 

sampled data points into a raster file.  An estimate for the value of each cell in the raster 

file is obtained by averaging the data points in the neighborhood of the cell (ESRI, 2010).  

IDW assumes that the influence of data points degrades as the distance from the cell 

increases (ESRI, 2010).  Interpolation using the IDW method is exact, meaning that the 

surface must go through the data points.  This also means that the maximum and 

minimum values will occur at sampled data points, as shown in Figure 13.   

 
Figure 13 – IDW Interpolation Profile (ESRI, 2010) 

 

This section has discussed geospatial analysis and described each of the tools 

which will be utilized by this research to calculate and summarize variable inputs for the 

Installation Comparative Analysis. 

2.10. Model Variable Descriptions 

This section will describe aspects of photovoltaic systems, facility energy use, 

electricity rates, facility cost, and engineering economic factors which will guide the 
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decomposition process utilized to develop the feasibility assessment model.  Each of the 

following subsections will discuss these aspects by topic and will also highlight sources 

of data which will provide estimates for model variables. 

2.10.1. Photovoltaic Systems. 

This section will provide a background of Photovoltaic (PV) technology, discuss 

how PV systems can be sized to offset the electrical energy demand of a facility, 

highlight the costs associated with a PV system over its life-cycle, and determine how 

constructing a facility to be PV ready will reduce future investment required to achieve 

net-zero energy.   

2.10.1.1. PV Technology. 

PV materials convert solar electromagnetic radiation into electricity.  French 

physicist Edmond Becquerel discovered in 1839 that some materials could be used to 

convert sunlight into an electrical current.  It took nearly a century following that 

discovery for scientists to truly understand the phenomenon (DOE, 2011).  They 

eventually learned that the photovoltaic or photoelectric effect causes materials to 

generate electricity when exposed to a solar resource.  PV technologies have been 

effectively and cost-efficiently utilized in numerous implementations such as watches, 

road signs, satellites, and buildings (DOE, 2011). 

The most common PV array uses flat-plate modules (DOE, 2011).  These can be 

fixed at a tilt and direction or allowed to track the sun using controls for maximum 



 

54 

efficiency.  The simplest and most common PV array, for use as on-site renewable energy 

generation, is a flat-plate panel fixed to the building’s roof structure (DOE, 2011).  These 

arrays achieve maximum efficiency when tilted to the site’s latitude (Marion & Wilcox, 

nd).  Tracking arrays are more efficient, but must be analyzed on a case-by-case basis as 

they also weigh and cost more.   

While PV modules have no moving parts, the modules can be tilted or rotated to 

maximize exposure to the sun (Anderson et al., 2011).  Electricity generation is 

maximized when PV modules are perpendicular, or normal, to the incoming sunlight.  

Mechanical tracking is used to enable PV panels to have greater access to sunlight, when 

compared to fixed panels, throughout the day and the year (Anderson et al., 2011).  

Single-axis tracking systems are oriented on a north-south axis and move the panels from 

east to west throughout the day.  These systems allow the panels to track the sun daily, 

but do not provide the capability to track north and south as the sun’s angle changes 

throughout the year.  Two-axis tracking changes the PV module orientation in both 

directions, such that it always faces the sun (Anderson et al., 2011).  Figure 14 shows the 

increase in efficiency between fixed, single, and two-axis configurations.  As shown in 

the figure, significant efficiency is gained by along east-west tracking, but minimal from 

the additional north-south tracking.  The life-cycle cost associated with a tracking system 

must be analyzed on a case-by-case basis. 
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Figure 14 – Efficiency Improvements with Tracking Configuration (Anderson et al., 

2011) 

2.10.1.2. PV System Sizing. 

Solar radiation is a term used to describe the electromagnetic radiation emitted 

from the sun (DOE, 2011).  The measure of solar radiation falling on a fixed plate or 

tracking surface over a period of time is known as solar resource (DOE, 2011).  Solar 

resource data is utilized to determine how much power can be produced by a PV panel 

and is expressed in kilowatt hours per square meter per day (DOE, 2011).  The technical 

and economical feasibility of utilizing the radiation depends on the total available 

resource.  Countries such as the U.S., located in the middle latitudes, receive the most 

solar energy in the summer months (DOE, 2011).  The difference between seasons is due 

to the solar radiation contacting the earth’s surface at different angles.  The difference 

between the available solar resource during summer and winter months can vary as much 

as 300 percent in many locations (DOE, 2011). 

A PV system is comprised of a collection of arrays, which are further comprised 

of numerous modules, which are each comprised of numerous individual cells (DOE, 

2011).  In order to characterize the efficiency of a system, the individual cell efficiencies 
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must be analyzed.  A PV cell typically produces only a small amount of power, one to 

two Watts; therefore, a system is composed of hundreds to thousands of cells.  Module 

performance is typically measured in both peak wattage and normal operating conditions, 

the latter of which describes a more realistic on-suite performance rating (DOE, 2011).  

Another description of array performance is the solar conversion efficiency.  This value is 

a percentage of the energy output from the array to the solar resource provided to that 

array (DOE, 2011). 

Current polycrystalline thin-film PV systems have an efficiency of around 16 

percent (Murphy, 2011).  Due to the fact that PV panels are rated at Standard Test 

Conditions (STC) and the efficiency decreases as cell temperature increases, simply 

multiplying that efficiency by the solar resource will not provide an accurate 

representation of a system’s power output (Menicucci, 1986).  The main cause of this 

efficiency change is temperature; under STC, a module’s efficiency is measured at 25 

degrees Celsius (NREL, 2012).  The efficiency at which a PV module will perform when 

installed is given by Equation 5 (Menicucci, 1986). 

𝑛𝑎 = 𝑛𝑜 ∗ (1 − 𝛽 ∗ (𝑡𝑐 − 𝑡𝑟)) (5) 

where 𝑛𝑜 equals the efficiency at reference cell temperature, 𝛽 equals the rate of 

efficiency change, 𝑡𝑟 equals the reference cell temperature, and 𝑡𝑐 equals the actual cell 

temperature.   

 

PV Watts, a computer simulation program utilized by nearly every stakeholder in 

the PV industry, uses an efficiency change factor, 𝛽, of 0.5 percent per degree Celsius for 

crystalline silicon PV panels (NREL, 2012).  Given the actual efficiency of the PV panel, 
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it is possible to calculate the Direct Current (DC) power using Equation 6 (Menicucci, 

1986).   

𝑃𝐷𝐶 =  𝑛𝑎 ∗ 𝑃𝑂𝐴 (6) 

where 𝑛𝑎equals the true efficiency of the panel and POA is the total insolation incident 

the PV panel.   

Due to the cyclical nature of temperatures throughout a day and year, using 

average temperature in Equation 5 does not provide an accurate representation of a PV 

panel’s power output.  Therefore, simulation is required utilizing historical 

meteorological data to develop a time-series, typically per hour, representation of power 

produced (NREL, 2012).  These data can then be summed to calculate the total annual 

power produced by the PV system.  The PV system size can be related to the area and 

efficiency of the panels by Equation 7.  

𝑆𝑦𝑠𝑡𝑒𝑚𝑆𝑖𝑧𝑒𝑆𝑇𝐶 = 𝐴𝑟𝑒𝑎 ∗ 𝑛𝑜 (7) 

The formula utilized by PV Watts to calculate the annual Alternating Current energy 

produced by the PV system is given by Equation 8. 

𝐴𝐶𝑎𝑛𝑛𝑢𝑎𝑙 = � 𝑆𝑜𝑙𝑎𝑟𝑅𝑒𝑠 ∗ 𝐴𝑟𝑒𝑎 ∗ 𝑛𝑎 ∗ 𝐶𝐹
8760

𝑛=1

 (8) 

where SolarRes is the hourly solar incidence per square meter, Area is the number of 

square meters occupied by the PV system, and CF is the ratio of a systems actual output 

to its rated output.  More simply stated, the Capacity Factor (CF) is the percentage of a 

PV system’s power that is available to the facility.  The CF is also known as the AC to 

DC derate factor and is composed of the characteristics in Table 4. 
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Table 4 - Derate Factors for PV Watts (NREL, 2012) 
Component Derate Factors PV Watts Default Range 

PV module nameplate DC rating 0.95 0.80–1.05 
Inverter and transformer 0.92 0.88–0.98 
Mismatch 0.98 0.97–0.995 
Diodes and connections 0.995 0.99–0.997 
DC wiring 0.98 0.97–0.99 
AC wiring 0.99 0.98–0.993 
Soiling 0.95 0.30–0.995 
System availability 0.98 0.00–0.995 
Shading 1.00 0.00–1.00 
Sun-tracking 1.00 0.95–1.00 
Age 1.00 0.70–1.00 
Overall DC-to-AC derate factor 0.77 0.09999–0.96001 

 
 

PV Watts calculates the time-series power produced by a crystalline silicon PV 

panel and is widely used to size PV systems.  The latest version of PV Watts can 

accurately predict the AC power output from a PV system to within 10 percent (Marion, 

Anderberg, George, Gray-Hann, & Heimiller, 2001).  As indicated in Equation 4, the 

efficiency of a panel depends on the rate of efficiency change (𝛽) and difference from the 

STC temperature (∆𝑡).  Once the PV Watts simulation program has modeled a specific 

PV panel’s characteristics, at a specific location, both of these values will become 

constants for analyzing a different size panel’s power output.  This means that “energy 

production numbers are linearly scalable for larger PV systems” (Stafford, Robichaud, & 

Mosey, 2011, p. 3).  Therefore, calculating the ratio of system size to power output, given 

the location and system configuration is constant, provides a continuous parametric 

estimate which can be used to size the system. 

Another factor which must be accounted for when sizing and performing a life-

cycle cost analysis of a PV system is that the power output from the system reduces with 
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time; this characteristic is known as degradation (Stafford, Robichaud, & Mosey, 2011).  

The actual annual loss varies by panel, but a median value of 0.5 percent per year is 

common, as shown in Figure 15. 

 

 
Figure 15 - Histogram of Annual PV Degradation (Jordan, Smith, Osterwald, 

Gelak, & Kurtz, 2011) 

2.10.1.3. PV System Costs. 

When discussing the cost of a PV system, it is common to divide it into three 

subsystems: PV modules, power electronics, and Balance of System (BOS).  PV modules 

are composed of numerous cells which convert light into electricity.  PV cells of made 

from a semiconductor material, for example crystalline silicon, that absorbs the energy 

from photons and then releases an electron from the molecule in response (Solar Energy 

Technologies Office, 2012).  The electron and hole, absence of electron, pair then travels 

to opposite poles, creating direct current (DC) electricity (Solar Energy Technologies 

Office, 2012).  This property is defined as the photoelectric effect. 
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PV panels, composed of numerous modules, have declined in price by about 20 

percent for every doubling of cumulative global production (Solar Energy Technologies 

Office, 2012).  The 2010 price of PV panels was about $2/watt.  PV panels have no 

moving parts; as such, they are typically the most reliable component in a PV system 

(Stafford, Robichaud, & Mosey, 2011).  Panels have a 25 to 30-year useful life and most 

manufactures warrant them against defects and excessive degradation for 25 years 

(Stafford, Robichaud, & Mosey, 2011 ; Anderson et al., 2011). 

In the vast majority of situations, it is more efficient to convert all DC electricity 

into alternating current (AC) electricity, as opposed to feeding a limited number of DC 

circuits directly.  Power electronics, the second subsystem, are used to convert and 

condition the electricity from the PV system into quality AC power which the facility can 

utilize or distribute to the utility grid if not needed (Solar Energy Technologies Office, 

2012).  The two primary devices in the power electronics components group are the 

inverter and transformer.  The inverter converts the DC electricity to AC, while the 

transformer increases the voltage to the appropriate level (Solar Energy Technologies 

Office, 2012).   

There are numerous sources of data for the cost per Watt of an inverter.  Goodrich 

et al., found an average inverter price of 37 cents per Watt in 2010 dollars; in the 2012 

Solar Technologies Market Report, that price dropped to 23 cents per Watt (GTM 

Research, 2012).  When replacing an inverter at the end of its useful life, there is very 

little labor required.  Typically, labor costs total less than $3,000 (Goodrich, James, & 

Woodhouse, 2012).  Most inverters are purchased with a 10-year warranty; the length of 

the warranty is consistently getting longer, and the useful life of inverters are typically 
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assumed to be 15 years (Anderson et al., 2011 ; Solar Energy Technologies Office, 2012).  

Transformers are rugged devices with a useful life of 25 to 30 years (Garcia, nd).   

All other components of a PV system, excluding the panels themselves or power 

electronics are lumped into Balance of System (BOS).  BOS components consist of all 

items such as wiring, mounting hardware, meter, installation, design fees, etc., required to 

create an operational system (Solar Energy Technologies Office, 2012). Non-hardware 

BOS components are considered sunk costs when calculating salvage value.  Wiring 

accounts for two cents per Watt, while mounting hardware accounts for six cents per 

Watt (Goodrich, James, & Woodhouse, 2012).  The remaining BOS components, such as 

disconnects and utility meter, all have useful lives greater than 25 years (Collins, 1999). 

Although individual component pricing is important, the most simplistic and 

useful metric of PV system capital price is installed cost per rated Watt (Morgan et al., 

2012).  Commercial PV systems take advantage of some economies of scale, making 

them less expensive per installed Watt than residential systems (Goodrich, James, & 

Woodhouse, 2012).  There are numerous sources of data for the installed cost metric of 

commercial systems.  The most recent estimate of $4.38 per Watt is from the second 

quarter of 2012 Solar Technologies Market Report.  The report also noted that 

commercial systems over 100 kilowatts have seen a dramatic drop in cost to between 

$2.50 and $2.75 per Watt.  The Department of Energy’s Sunshot initiative sets a 

benchmark price of $4.59 per Watt in 2010 dollars.  Another study by the DOE found a 

grid-tied system to cost $3.67 for systems between 100 and 1,000 kilowatts (NREL, 

2012). 
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2.10.1.4. PV Ready Construction Cost. 

Even with the cost of PV systems dramatically declining over the last few years, 

they remain a significant capital investment which may not be economically feasible at 

the time of construction (Lisell, Tetreault, & Watson, 2009).  Constructing new facilities 

with the characteristics to easily accommodate and maximize a PV system’s power 

output, whether the system is installed during construction or at a later date, will improve 

the cost-effectiveness of the investment (Lisell, Tetreault, & Watson, 2009).  A facility 

which is constructed so that it can easily accommodate a future PV system is known as 

PV-Ready.  By one estimate, the capital investment required to retrofit a facility with PV 

would be reduced by up to ten percent if the facility were constructed to be PV-Ready 

(California Statewide Utility Codes and Standards Team, 2011).   

Table 5, modified from the General Solar Guidelines checklist, outlines the 

characteristics which should be accounted for when constructing a Solar Ready facility.  

Table 6, modified from the Additional Guidelines for Photovoltaic (PV) Systems 

checklist, outlines the additional characteristics which should be addressed when 

constructing a PV Ready facility. 
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Table 5 - General Solar Guidelines (Lisell, Tetreault, & Watson, 2009, p. 6) 
Avoid shading from trees, buildings, etc. (especially during peak sunlight hours). 
Check the zoning laws for the proposed site to ensure that future, neighboring 
construction will not cast shade on the array. 
Determine where a future solar array might be placed. 
If the roof is sloped, the south-facing section will optimize the system performance; keep 
the south-facing section obstruction-free if possible. 
Minimize rooftop equipment to maximize available open area for solar collector 
placement. 
The type of roof installed can greatly affect the cost of installing solar later. 
The roof must be capable of carrying the load of the solar equipment. (PV – between 3 
and 6 lb/ft2) (ST – between 2 and 5.5 lb/ft2) 
The wind loads on rooftop solar equipment must be analyzed in order to ensure that the 
roof structure is sufficient. See the American Society of Civil Engineers (ASCE) 
international building code 7-05 for the method of how to calculate these loads. 
Record Roof Specifications on Drawings. 
Add additional safety equipment for solar equipment access and installation. 

 

Table 6 - Additional Guidelines for PV Systems (Lisell, Tetreault, & Watson, 2009, 
p. 9) 

Identify electrical panel location for convenient PV system inter-connections, and keep 
space available in the electrical panel for a PV circuit breaker.  
Specify panel capacity sufficient to accommodate the total power coming into the 
building (proposed PV system size power generation plus size of breaker protecting main 
panel). NEC allows for the sum of these two sources of power to be 20% greater than the 
panel rating. Consult the local authority having jurisdiction.  
Lay out the locations for the inverter and the balance of system (BOS) components.  
Identify the inter-connection restrictions for the location of the building site that apply to 
grid-tied PV systems.  
Run electrical conduit from the solar collector location to the electrical panel and other 
electrical components.  
Consider any special load needs (i.e., uninterrupted power supply) and consider whether 
storage is needed.  
PV panels are much more sensitive to shading than Solar Thermal panels. Avoid shading 
as much as possible. Due to the individual modules of a PV panel being connected in 
series, even a narrow strip of shading (lightning rods, antennas, etc.) can limit the current 
of the entire array.  
Find out what the energy production of the proposed system will be using the PVWatts 
calculation tool, and adjust the system size as needed. 
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Constructing a Solar-Ready facility requires only a capital investment, as there are 

no operations or maintenance costs associated with the required characteristics 

(California Statewide Utility Codes and Standards Team, 2011).  A couple of studies 

have shown that the incremental cost to construct a PV-Ready facility is minimal, ranging 

from zero to one percent (California Statewide Utility Codes and Standards Team, 2011) 

(Hendrick Automotive Group, 2009). 

2.10.2. Facility Energy. 

This section will provide a background of facility energy use, energy 

benchmarking, and electricity rates.  The overview of these topics will guide the 

decomposition process and allow for the identification and categorization of model 

variables.  Each of the topics will be discussed in the following subsections. 

2.10.2.1. Facility Energy Use. 

In any energy reduction initiative, it is necessary to measure and compare the 

energy performance of facilities.  This can be done utilizing simple monthly and annual 

utility bill averages or through detailed time-series measurements which categorize 

energy by end-use.  A building’s energy use is the total energy consumed for heating, 

ventilating, air conditioning, lighting, hot water, plug loads, and other energy necessities 

(PNNL, 2010).  A building’s energy use intensity (EUI) is a normalized value of the 

building’s energy use, calculated by dividing the total energy use by the square area of 

the facility over a given time period (PNNL, 2010).  This value allows for the comparison 
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of the building to that of a benchmark building of the same characteristics.  This provides 

an indication of how well the facility is performing regarding energy and can be used by 

facility managers to take corrective action or by code agencies, such as the American 

Society of Heating, Refrigerating, and Air-Conditioning Engineers (ASHRAE), to verify 

compliance. 

There are two primary energy codes which can be adopted by local, state, and 

federal jurisdictions (PNNL, 2010).  The first is the International Energy Conservation 

Code (IECC), which is produced by the International Codes Council.  The second is 

standard 90.1, Energy Standard for Buildings Except Low-Rise Residential Buildings, 

which is produced by ASHRAE.  The IECC address both residential and commercial 

buildings, while ASHRAE 90.1 only covers commercial buildings.  Commercial facilities 

are defined by ASHRAE 90.1 as buildings other than single-family or multifamily of 

three floors or less (PNNL, 2010).  The IECC has adopted ASHRAE 90.1 by reference, 

meaning that if a building meets 90.1, then it also meets the IECC standard (PNNL, 

2010).  All new federal facilities must meet Title 10 Code of Federal Regulations 434, 

which is based on ASHRAE 90.1 (VanGeem, 2010).  Standard 90.1 is developed using 

the American National Standards Institute’s consensus process to ensure that the interests 

of all stakeholders are balanced and considered (PNNL, 2010).  Standard 90.1 separates 

facilities by use and climate zone. 

Climate is one of the most significant factors impacting the energy use of a 

facility.  To generalize and allow discussion regarding the impact of climate, it is 

necessary to classify it.  Climate classification techniques were first introduced by ancient 

astronomers, who analyzed the earth as a sphere and deduced five climate zones (Briggs, 
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Lucas, & Taylor, 2002).  The first quantitative technique was introduced by Aristotle in 

the 4th century BC when he classified a region termed the tropics (Briggs, Lucas, & 

Taylor, 2002).  These early classification techniques were termed “genetic” as they 

attempted to explain observed geospatial variations in climate characteristics (Briggs, 

Lucas, & Taylor, 2002). 

Earlier works were limited by the availability of data; by the 1980s, there was a 

significant amount of climactic data available for the U.S. (Briggs, Lucas, & Taylor, 

2002).  This data drove the adoption of new techniques for climate classification.  One 

very powerful technique, called hierarchical cluster analysis, emerged which could be 

utilized to group together similar observations (Briggs, Lucas, & Taylor, 2002).  

Hierarchical cluster analysis uses a metric representing the similarity between 

observations to group like observations together (Briggs, Lucas, & Taylor, 2002).  The 

distance metric can be any descriptive characteristic which the observations have in 

common.  In the case of climatology, common metrics include heating and cooling days, 

precipitation, solar irradiation, wind, weather patterns, etc.   

Many of the initial cluster analysis models failed to classify all points in the U.S.  

In order for the classification to be utilized for code requirements, all locations must be 

clearly defined by the system.  To correct this, ASHRAE performed an analysis for the 

creation of standard 90.1-1989 which resulted in 38 categories covering all U.S. locations 

(Briggs, Lucas, & Taylor, 2002).  The goal of the climate classification discussed by 

Briggs et al. (2002) was to produce a simple and accurate way to classify the U.S. climate 

in order to better prescribe energy efficiency measures for buildings.  This work has been 

adopted by numerous organizations and programs including, but not limited to ASHRAE 
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90.1, ASHRAE 90.2, ASHRAE Advanced Energy Design Guides, Building America, and 

ENERGY STAR (Energycodes.gov, 2009). 

The final zones were not based solely on geostatistical analysis; the results from 

the model drove the classification of existing county boundaries as an approximation 

(Briggs, Lucas, & Taylor, 2002).  This allows for the climate zones to be more easily 

implemented in building energy codes.  The study resulted in the 17 climate designations 

as shown in Table 7.  

 

Table 7 - Building America Climate Zones (Briggs, Lucas, & Taylor, 2002) 

 
 

2.10.2.2. Benchmark Energy Use. 

The National Renewable Energy Lab has developed building model simulations 

based on a representative sample of the commercial building sector, categorized by 

facility type and climate zone.  The purpose of these models was to create standardized 
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benchmarks with which to analyze the improvements generated through energy code 

changes and energy efficiency initiatives (Griffith B. , Long, Torcellini, Judkoff, 

Crawley, & Ryan, 2008).  The models were generated using probabilistic modeling from 

literature reviews and data from the 2003 Commercial Building Energy Consumption 

Survey (CBECS).   

CBECSs are conducted every 4 years by the Energy Information Administration, but due 

to funding and methodology challenges, the 2003 CBECS is the most recent study.  The 

2003 CBECS included results from 4,820 non-mall facilities, making it the most 

statistically accurate description of the U.S. commercial building sector available 

(Griffith et al., 2008).  Table 8 summarizes some of the key modeling aspects used to 

generate the benchmark facilities.  The three dimensional renderings of the Small Office, 

Medium Office, and Small Hotel benchmark facilities are shown in Figure 16 through 18. 

 

Table 8 – DOE Benchmark Facility Aspects (Thornton, et al., 2011) 
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Figure 16 – 3D Rendering of Small Office Benchmark Facility (Thornton, et al., 

2011) 
 

 
Figure 17 – 3D Rendering of Medium Office Benchmark Facility (Thornton, et al., 

2011) 
 

 
Figure 18 – 3D Rendering of Small Hotel Benchmark Facility (Thornton, et al., 

2011) 
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The models were validated by comparing the energy profile predictions from 

EnergyPlus, an energy simulation program created by the DOE, to the data sets from the 

CBECS.  Overall, the models agreed to within 12 percent, with the exceptions of 

education, food service, inpatient health, and public order and safety, for the 16 facility 

types modeled (Griffith et al., 2008).  The model predictions also obtained satisfactory 

results for all climate zones except East North Central and Mountain (Griffith et al., 

2008). 

To determine the improvements in energy use due to energy code revisions, code 

compliant energy models needed to be created.  To create these models, the Pacific 

Northwest National Laboratory modified the DOE models to comply with ASHRAE 

Standards 90.1-2004, 90.1-2007, and 90.1-2010 (Thornton et al., 2011).  These code-

compliant models were used to analyze the building energy consumption savings from 

Standard 90.1-2010, which was under development.  This study produced the three code-

compliant versions for all 16 benchmark facility types and analyzed them in 17 climate 

zones.  This resulted in 816 models, which were run simultaneously, to produce energy 

profiles applicable across building types and locations (Thornton et al., 2011).  It is 

important to note that energy modeling does contain uncertainty.  The sources of 

uncertainty are due to assumptions made about input values, such as occupant behavior 

and component energy performance (Clevenger & Haymaker, 2006).  A well calibrated 

model should produce results to within 10 percent (Clevenger & Haymaker, 2006).  The 

resulting Benchmark Energy Use Intensity values for ASHRAE 90.1 – 2004 compliant 

facilities are summarized in Table 9. 
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Table 9 – Benchmark EUI Summary (Thornton et al., 2011) 

Zone 
Small 

Office EUI 
(kWhr/ft^2) 

Medium 
Office EUI 

(kWhr/ft^2) 

Small  
Hotel EUI 

(kWhr/ft^2) 
1_moist 12.074484 14.975932 20.954505 
1_dry 12.689931 15.65 20.544207 
2_moist 11.840028 15.15 21.335496 
2_dry 12.279633 15.03 20.632128 
3_moist 11.576265 14.71 21.745794 
3_dry 11.546958 13.98 20.280444 
3_marine 10.316064 12.51 19.401234 
4_moist 11.986563 15.36 23.181837 
4_dry 11.781414 13.69 21.188961 
4_marine 11.107353 13.86 21.569952 
5_moist 13.012308 16.35 25.057485 
5_dry 12.01587 14.68 22.800846 
5_marine 10.990125 13.95 21.950943 
6_moist 13.77429 17.32 26.640063 
6_dry 13.363992 15.97 24.705801 
7 13.012308 18.99 29.336307 
8 19.606383 23.45 34.699488 
* Averages taken for climate zones not covered 

2.10.3. Electricity Cost 

Electricity rates are composed of numerous components, such as usage, peak 

demand, customer charges, etc. (Fuller & Petersen, 1995).  In a Level 1 feasibility study, 

it is acceptable to use the average electricity rate at the building’s site (EPA CHP 

Partnership, 2012).  The average rate is composed of both usage and demand charges and 

is expressed as dollars per kilowatt per hour.  Utilizing the average electricity rate for a 

feasibility study provides a conservative cost savings estimate, as reductions in overall 
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energy use could cause a transition to a lower rate structure (Fuller & Petersen, 1995).  

This transition could dramatically lower the electricity cost for the facility. 

Historically, Department of Defense (DoD) average electricity rates have tracked 

between commercial and industrial rates, as reported to the Energy Information 

Administration (Andrews, 2009).  As seen in Figure 19, electric rates have recently 

trended toward the more expensive commercial rate; therefore, estimating the DoD rate 

as the average will provide a conservative estimate. 

 

 
Figure 19 – DoD versus EIA Reported Average Electric Rates (Andrews, 2009) 

2.10.4. Facility Costs. 

There are numerous components of facility cost which are incorporated into the 

feasibility assessment model.  Each will be discussed in the following subsections. 
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2.10.4.1. Facility Construction Cost. 

There are three main methods for estimating the costs of constructing a facility: 

engineering, analogous, and parametric (NAVFAC, 1993).  Early in a project’s life-cycle, 

detailed designs are not available to base engineering or analogous estimates from; 

therefore, estimates at the programming stage must be obtained using parametric 

estimation techniques (US Department of Defense, 2011).  This method is utilized to 

characterize historical data in terms of known parameters; for facilities, these are 

commonly expressed in cost per square foot and categorized by facility type (New South 

Wales Treasury, 2004).   

The DoD, and each service, provide guidance to project programmers regarding 

the use of unit costs to provide programming-level estimates of a facility’s cost.  These 

unit costs are categorically separated by facility type to more accurately reflect the cost of 

potential facilities (US Department of Defense, 2011).  There are numerous distinctions 

between DoD and commercial facility cost; for example, DoD facilities are required to 

meet minimum antiterrorism specifications and sustainable design features which are 

required for federal facilities.  To make these parametric estimates more accurate, unit 

cost guides include three main adjustment factors.  First, costs are adjusted for the size of 

the project (AFCESA, 2007).  This is conducted by multiplying the unit costs by a factor 

which corresponds with the ratio of the proposed building size to the typical building size 

(AFCESA, 2007).  This factor accounts for economies of scale and is shown in Figure 20. 
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Figure 20 - Size Adjustment Curve (AFCESA, 2007) 

 

The second main adjustment factor is for escalation.  This factor uses inflation 

estimates from the Office of Management and Budget for Military Construction 

(MILCON) (AFCESA, 2007).  It is calculated by dividing the escalation index of the 

midpoint of construction by the escalation index of the unit cost data (AFCESA, 2007).  

The final main adjustment factor is for the location at which the facility will be 

constructed.  The unit cost provided in DoD pricing guides is normalized to a national 

average cost factor (US Department of Defense, 2011).  As the cost of construction varies 

by location, every installation has a specific area cost factor which is multiplied by the 

unit cost to determine the cost of the facility at that installation (AFCESA, 2007). 

In addition to adjustment factors, Air Force construction must also be adjusted for 

supervision, inspection, and overhead (SIOH) and a buffer included for contingencies 

(AFCESA, 2007).  As described in Section 2.1, the design and construction agent for 

USAF MILCON is usually not internal; therefore, SIOH must be included to account for 
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additional management personnel.  In the contiguous U.S., SIOH for both the Navy 

Facilities Engineering Command and the Army Corps of Engineers is 5.7 percent 

(AFCESA, 2007).  The USAF also requires unit cost estimates to include a five percent 

contingency; providing a buffer to absorb unforeseen circumstances (AFCESA, 2007).  

2.10.4.2. Incremental Construction Cost. 

A facility which utilizes less energy than its benchmark, will, assuming all other 

factors remain constant, cost more money to construct (Jiang, Gowri, Lane, Thornton, 

Rosenberg, & Lui, 2011).  This fact is known as incremental construction cost.  The New 

Buildings Institute study provides some generalized indication of incremental costs and 

percent reductions associated with Zero-Energy Buildings (ZEB).  The study used 

facilities with an energy-use-intensity (EUI) of less than or equal to 10,250 kilowatt hours 

per square foot per year.  This is 62 percent lower than the average building of the same 

type and climate zone from the 2003 Commercial Building Energy Consumption Survey 

(CBECS) (New Buildings Institute, 2012).  The research found that the incremental cost 

required to decrease EUI to ZEB levels was in the 3 to 18 percent range, with the vast 

majority of office buildings falling below 10 percent, depending on facility type and 

climate zone (New Buildings Institute, 2012).  With these cost increases, many of the 

facilities were able to achieve a payback period of 10 to 15 years (New Buildings 

Institute, 2012). 

Due to the natural variability in construction and the limited data available 

regarding the construction premium required to achieve a low-energy building, historical 

data cannot be used to provide an accurate parametric estimate.  Since adequate historical 
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data does not exist, computer simulations must be used.  Computer simulation can be 

used to obtain an estimate of construction premium by modeling and comparing the 

energy use and incremental construction cost of the two design alternatives (Jiang, 

Gowri, Lane, Thornton, Rosenberg, & Lui, 2011).  If the simulations are conducted for 

each facility type and in each climate zone, they will produce data points which can be 

used in a life-cycle cost analysis (Jiang, Gowri, Lane, Thornton, Rosenberg, & Lui, 

2011). 

The DOE utilized the above approach to determine the incremental construction 

cost of meeting their advanced energy design guides (AEDG).  AEDGs are developed to 

explain to engineers and designers how to apply new techniques and incorporate new 

technologies such that results are maximized, consistent, and predictable (Higa, McLean, 

Mack, & McHugh, 2012).  The US DOE and ASHRAE have produced Advanced Energy 

Design Guides (AEDG) for common commercial facility types.  The two most aggressive 

AEDGs apply to Small and Medium Office and Highway Lodging (Small Hotel) facility 

types and provide design guidance to achieve a building which uses 50 percent less 

energy than one constructed to ASHRAE 90.1–2004 (ASHRAE, 2011).  Meeting the goal 

of constructing and operating a facility to use 50 percent less energy requires changes to 

many common practices.  The AEDG outlines a few which are essential to success 

(ASHRAE, 2011, p. 5): 

• Obtain building owner buy-in. 

• Assemble an experienced, innovative design team. 

• Adopt an integrated design process. 

• Consider a daylighting consultant. 
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• Consider energy modeling. 

• Use building commissioning. 

• Train building users and operations staff. 

• Monitor the building. 

 

The AEDG includes topics such as Integrated Project Delivery, Integrated Design 

Strategies, Design Strategies and Recommendations by Climate Zone, and Good 

Practices for Implementation.  They present prescriptive recommendations by climate 

zone including “enhanced envelope technologies, interior and exterior lighting 

technologies, heating, ventilating, and air conditioning (HVAC) and service water 

heating (SWH) technologies, and miscellaneous appliance technologies” (Jiang, Gowri, 

Lane, Thornton, Rosenberg, & Lui, 2011, p. 5).  The technical support documents 

associated with the ASHRAE’s 50 percent AEDGs provide a reliable source of energy 

reduction and construction premium data through the use of energy modeling and 

simulation.  The data obtained from these documents is summarized in Table 10.   

Incremental construction cost data for USAF facilities is limited to a few Air 

Force Center for Engineering and the Environment (AFCEE) sponsored feasibility 

studies.  Expanding from USAF to DoD facility types provides more data; the most 

significant study was conducted by the Army Corps of Engineers to determine strategies 

for compliance with the Energy Independence and Security Act (EISA) of 2009 (Carpio 

& Soulek, 2011).  Although this research provides more data points, there are not enough 

to predict construction premiums for all climate zones reflective of installations in the 

contiguous U.S. 
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Table 10 – AEDG Data Points Summary 

Zone 
Small Office Medium Office Small Hotel 

Construct 
Premium 

Percent  
Reduction 

Construct 
Premium 

Percent  
Reduction 

Construct 
Premium 

Percent  
Reduction 

1_moist 3.50% 50.00% 5.40% 54.00% 8.40% 51.00% 
1_dry 3.80% 50.00% 5.40% 54.00% 8.40% 51.00% 
2_moist 3.70% 56.00% 5.90% 56.00% 8.50% 54.00% 
2_dry 3.75% 57.00% 5.90% 57.00% 8.50% 51.00% 
3_moist 3.80% 54.00% 6.30% 54.00% 8.40% 54.00% 
3_dry 3.25% 53.00% 6.60% 54.50% 8.40% 51.00% 
3_marine 3.40% 55.00% 6.50% 58.00% 8.70% 54.00% 
4_moist 3.40% 57.00% 6.00% 57.00% 8.60% 56.00% 
4_dry 3.10% 56.00% 5.70% 55.00% 8.60% 53.00% 
4_marine 3.40% 57.00% 6.40% 58.00% 8.60% 55.00% 
5_moist 4.00% 59.00% 6.10% 56.00% 8.60% 58.00% 
5_dry 3.60% 58.00% 5.80% 55.00% 8.60% 56.00% 
5_marine 3.80% 58.50% 5.95% 55.50% 8.60% 57.00% 
6_moist 3.70% 59.00% 5.80% 56.00% 8.70% 59.00% 
6_dry 3.60% 58.00% 5.80% 56.00% 8.70% 58.00% 
7 3.80% 56.00% 5.50% 59.00% 8.70% 60.00% 
8 3.70% 51.00% 5.80% 59.00% 8.60% 60.00% 

 

2.10.5. Economic Factors 

To compare costs and benefits in an economic analysis, those costs and benefits 

must be expressed at the same point in time (Fuller, 2005).  These adjustments are 

necessary due to the time-value-of-money, which is caused for two reasons.  First, 

alternative investment opportunities require money to be expressed in terms of real 

earning potential.  For example, money can be placed into an account with a guaranteed 

rate of return or that same money could be placed into an investment which yields 
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benefits in the future.  The value of the real earning potential is typically representative of 

the riskiness of the investment.  Second, in our inflationary economy, the value of money 

erodes over time.  Therefore, an investor would require more than a dollar at some future 

time to equate to one dollar today.  

The process of converting costs and benefits received at different points in time to 

their equivalent present value is called discounting.  The mathematics of compound 

interest is typically accounted for through the use of economic factors.  In the commercial 

sector, these factors are based on a discount rate equal to the investor’s minimum 

attractive rate of return.  For the federal government, the Department of Energy (DOE) or 

Office of Management and Budget (OMB) provides these discount rates (Fuller & 

Peterson, 1995).  The DOE discount rates are required for energy conservation and 

renewable energy projects, while the OMB rates are for projects that are not primarily 

concerned with energy or water conservation.  The underlying methodologies are 

identical for both organizations; the solutions differ due to the discount rates utilized.  

A tri-services Memorandum of Agreement (MOA) entitled “Criteria/Standards for 

Economic Analysis/Life-Cycle Costing for MILCON Design” provides guidance on life-

cycle cost analysis (LCCA) for the MILCON program.  This MOA is consistent with the 

rules outlined in both the DOE and OMB methodologies.  The MOA recommends, but 

does not require, the use of middle-of-year discounting for all recurring cash flows 

(Fuller, 2005).  Middle-of-year discounting conflicts with standard practice for manual 

life-cycle cost (LCC) calculations, which uses end-of-year convention (Fuller, 2005).   

A brief description and the formula for each of the economic factors which were 

utilized during this project will be discussed below.  The Single Present Value (SPV) 
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factor is used to discount a single future cost or benefit to its equivalent present value and 

is given by Equation 9 (Fuller & Peterson, 1995).  

𝑆𝑃𝑉𝑡,𝑑 =
1

(1 + 𝑑)𝑡
 (9) 

where d is the discount rate and t is the number of periods from the base date.   

The Uniform Present Value (UPV) factor is used to sum and discount a recurring 

uniform cost or benefit and is given by Equation 10 (Fuller & Peterson, 1995).   

𝑈𝑃𝑉𝑑,𝑁 =
(1 + 𝑑)𝑁 − 1
𝑑 ∗ (1 + 𝑑)𝑁

 (10) 

where d is the discount rate and N is the number of periods over which the money 

reoccurs. 

The Modified Uniform Present Value (UPV*) factor is used to sum and discount 

a recurring cost or benefit that is expected to change from year to year at a constant rate 

and is given by Equation 11 (Fuller & Peterson, 1995).   

𝑈𝑃𝑉∗𝑑,𝑒,𝑁
(1 + 𝑒)
(𝑑 − 𝑒)

∗ [1 −
(1 + 𝑒)
(1 + 𝑑)

𝑁

] 
(11) 

where d is the discount rate, e is the escalation rate, and N is the number of periods over 

which the cash flow reoccurs. 

Due to fluctuations in an energy commodity’s escalation rate, the Federal Energy 

Management Program (FEMP) recommends using cost indices to calculate the UPV* 

factor instead of Equation 11 (Rushing, Kneifel, & Lippiatt, 2011).  A cost index 

represents the future cost of energy in relation to a base-date price.  This approach allows 

for the incorporation of energy price projections based on estimates by the Department of 

Energy.  Indices are provided for four separate census regions.  The formula for 
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calculating the UPV* factor, given the applicable cost indices, is provided by Equation 

12 (Rushing, Kneifel, & Lippiatt, 2011). 

𝑈𝑃𝑉∗𝑁 = �
𝐼2011+𝑡

(1 + 𝑑)𝑡

𝑁

𝑡=1

 
(12) 

where the cost index is I, the year of the study is t, and the discount rate is d.   

To account for a change in the volume of the energy savings benefit, attributable 

to the photovoltaic panel degradation over time, an arithmetic gradient must be subtracted 

from Equation (12.  The FEMP does not include an arithmetic gradient factor, but the 

factor is widely used in engineering economic analysis.  The factor is determined by 

Equation 13 (Eschenbach, 1995). 

𝐴𝑃𝑉𝑖,𝑁 =  
(1 + 𝑖)𝑁 − 𝑖 ∗ 𝑁 − 1

𝑖2 ∗ (1 + 𝑖)𝑁
 

(13) 

where i is the discount rate and N is the number of periods over which the gradient 

occurs. 

If future values are expressed in constant dollars, i.e., money in terms of base-date 

dollars, then a real interest rate may be used to discount them (Fuller, 2005).  This real 

rate is equal to the earning potential of money over time. In contrast, if values are 

expressed in current dollars, where inflation is included in the future values, then a 

market, also known as nominal, discount rate must be used (Fuller, 2005).  This rate takes 

into account both inflation and the earning potential of money over time.  If performed 

correctly, both approaches produce identical results.  The advantage of using constant 

dollars is that it simplifies the analysis.  The factor tables produced in the annual 

supplement are based on a constant dollar assumption (Fuller, 2005). 
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Most construction projects consist of a planning and construction (P/C) period 

which must be accounted for in an economic analysis.  Initial investments can be phased 

in during this period or assigned to a single point in time (Fuller & Peterson, 1995).  The 

Federal Energy Management Program stipulates a maximum study period of 25 years, 

plus the length of the P/C period.  All costs must be discounted to their present value as 

of the base date.  The service period begins when the building is occupied and represents 

the period of time that operational costs and benefits are incurred.  The study period is the 

sum of the P/C and service periods.   

This relationship is illustrated in Figure 21.  The delayed service date, for 

recurring costs or benefits, is easily accounted for by determining the present value using 

the total study period and then subtracting the present value using the P/C period.  For 

example, given a uniform series, the present value can be determined by UPVStudyPeriod – 

UPVP/C. 

 

 
Figure 21 - Study Period with Delayed Service Date (Fuller & Peterson, 1995) 

 

Another aspect of life-cycle cost which must be accounted for are replacement 

costs.  The FEMP requires the incorporation of capital replacement costs for major 

building systems, the timing of which is based on the estimated life of the system.  These 
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costs are incurred at points in time and must be discounted to their present value (Fuller 

& Peterson, 1995). 

If the life of major building systems does not match the service period, the 

salvage values of those systems should be included in the economic analysis (Fuller & 

Peterson, 1995).  The residual value of a system is the initial value minus the value at the 

conclusion of the study.  Residual values, even if present, can be negligible due to an 

offset by removal and disposition costs (Fuller & Peterson, 1995).  The FEMP states that 

if a building or major building system will remain in service after the conclusion of the 

study, the in-situ residual value should be used (Fuller & Peterson, 1995).  The in situ 

residual value means that removal and disposition costs should not be included.  In 

general, linear prorating is acceptable to estimate the salvage values for building systems 

(Fuller & Peterson, 1995).  Linear prorating provides a residual value, at a specified point 

in time, by using a straight line interpolation between the initial cost of the system and its 

value at the conclusion of its useful economic life. 
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III. Research Approach 

This chapter describes the approach utilized by this research to answer the 

investigative questions outlined in Chapter 1.  The overall approach is a combination of 

methodologies from the disciplines of Model Building, Economic Analysis, and 

Geospatial Analysis.  The research approach is divided into three phases: Model 

Development, Model Evaluation, and Model Application.   Figure 44 in Appendix A 

outlines the approach which developed the Cost-Effective (CE) Net-Zero Energy (NZE) 

model.  Figure 45 in Appendix A outlines the approach which determined the sensitivity 

of the CE NZE model to input value variations and will rank the variables in terms of the 

need for quality data.  Figure 46 in Appendix A outlines the approach which ranked 

installations in terms of the net-savings (NS) of constructing a Zero-Energy Building 

(ZEB).  It also proved that this ranking, which will also be termed the most likely 

installations to achieve CE NZE, is statistically similar between facility types.  In each of 

the three graphics described above: 

• Inputs to each process are contained in the circle above the process. 

• Processes are in the middle of each graphic and the corresponding actions are 
contained in each. 

• Outputs to each process are contained in the circle below the process. 

• Outputs within the box defining the phase are intermediate, while those 
outside the box are products of the research which will be used to answer 
investigative questions. 

Each phase will be discussed in more detail in the following sections. 
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3.1. Model Development 

This section outlines the methodologies and actions necessary to generate a net-

zero energy (NZE) feasibility assessment model which uses a Net-Savings (NS) metric to 

determine if the potential project will be cost-effective (CE).  This phase is divided into 

four distinct processes; each will be discussed in the following subsections. 

3.1.1. Fundamental Model Development. 

This section outlines the process which will generate the two fundamental 

equations defining the CE NZE feasibility model.  The first equation represents the 

requirement for the facility to be NZE and the second represents the requirement that the 

NZE design be cost-effective.  The following sections describe the methodology utilized 

to generate the fundamental mathematical equations.  

3.1.1.1. Generate Net-Zero Energy Fundamental Equation. 

This section develops the mathematical equation which represents the definition 

of NZE chosen for this research.    The input required to generate the equation is the 

definition selected for NZE.  As described in Section 2.4, this research will utilize the 

net-zero site definition; according to this definition, the facility reaches NZE status when 

the energy produced in a given year offsets the energy demand in that same year.  The 

equation resulting from this section is an input to the functional decomposition process. 
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3.1.1.2. Generate Cost-Effectiveness Fundamental Equation. 

This section develops the mathematical equation which represents the 

requirement for the NZE design alternative to be CE.  The process of this section aligns 

with the Life-Cycle Cost (LCC) methodology established by the Federal Energy 

Management Program (FEMP) for the economic evaluation of energy conservation, 

water conservation, and renewable energy projects (Fuller & Peterson, 1995). The FEMP 

rules are published in Title 10, Code of Federal Regulations 436, subpart A, and apply to 

all federal agencies (Fuller & Peterson, 1995).  Although this methodology was 

developed for federal agencies, it is consistent with the American Society of Testing and 

Materials economic analysis standards (Fuller & Peterson, 1995).   

The input to this process is the model chosen to account for all costs arising 

during the facility’s life-cycle.  The LCC model in Equation 2 was chosen for this 

research.  Once the model is chosen, it must be modified to account for the costs specific 

to each of the project alternatives (New South Wales Treasury, 2004).  Deductive 

reasoning was used to ensure that the modified LCC models are equivalent to those 

provided by Equation 2 (Fieser & Dowden, 2003).  Once the LCC models were modified, 

the NS metric was incorporated to analyze the cost-effectiveness of the NZE design 

alternative.  Upon incorporating the NS metric, all costs which are equivalent between 

the two alternatives will be canceled.  The process outlined above generates the second 

fundamental equation, which is an input to the Functional Decomposition process. 
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3.1.2. Function Decomposition. 

This section decomposes the two fundamental equations into independent and 

predictable elements.  The process which generates the decomposed functions is 

Hierarchical Function Decomposition; more detail regarding this methodology is 

available in Section 2.7.  Function decomposition is used for each element in the 

fundamental equations and was repeated until all major costs can be estimated (New 

South Wales Treasury, 2004).  Function decomposition utilizes deductive reasoning to 

ensure that the relationships present in the fundamental equations and all costs 

contributing to the elements in the LCC model are maintained.  This fact is critical to 

obtaining a cost estimate with acceptable accuracy, but results in costs being included 

which do not significantly contribute to the decision being made. 

Numerous federal cost estimating guides allow costs, which do not contribute to 

an objective of the analysis, to be excluded (Department of the Air Force, 2008).  The 

goal of any LCCA should be to include all relevant costs; when costs are excluded, 

established best practice is to explicitly state which costs will be excluded and provide 

justification for why each is insignificant (GAO, 2009).  Although there are no specific 

thresholds for determining if a cost is significant, the FEMP defines significant costs as 

those which are “large enough to make a credible difference in the LCC of a project 

alternative” (Fuller & Peterson, 1995, p. 55).   

The inputs required for the decomposition process are the two fundamental 

equations developed in Section 3.1.1, the threshold to determine if a cost is substantial, 

and the relationships identified in literature review which guided the decomposition.  
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This project utilizes a threshold of one percent to determine if a cost or benefit is 

significant.  The relevant literature review is described in Section 2.10.  The decomposed 

NS equation will be an input to the Engineering Economics process and the decomposed 

NZE equation will be an input to the function combination process.  

3.1.3. Engineering Economics. 

This section will add engineering economic factors to the Net-Savings (NS) 

equation in order to account for the time-value of money.  The incorporation of economic 

factors is consistent with the methodology outlined in the Federal Energy Management 

Program (Fuller & Peterson, 1995).  To simplify the environment of this research, 

assumptions are made; these assumptions are those related to the economic methodology 

and did not limit the accuracy of the model (NAVFAC, 1993).   

The inputs required for this process outlined above are the decomposed NS 

equation, economic assumptions, and the factors to convert all cash-flows to present 

worth.  More detail regarding the economic factors utilized can be found in Section 

2.10.5.  The assumptions utilized are outlined in Table 11.  The output to this process is 

an input into the Function Combination process. 
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Table 11 – Model Economic Assumptions 
Variable Assumption 

Discount Rate 3% 
Study Period 27 
Planning and Construction Period 2 
Service Period 25 
Base-date 2011 
Discounting Approach End of Year 
Inflation Adjustment Method Constant Dollars 
Inverter Replacement 15 

 

3.1.4. Function Combination. 

This section combines the net-zero energy (NZE) and net-savings (NS) equations 

into the single cost-effective (CE) NZE model.  The combination process begins with the 

incorporation of variables, representing the estimation technique, for each element into 

the decomposed equations.  Each equation is a function of the percent energy reduction 

from the baseline and the size of the PV system necessary to offset the remainder of 

energy demand.  The model is a system of equations as they involve the same set of 

independent variables (System of Linear Equations, 2012).  As this is a system of 

equations with two equations and two unknowns, a unique solution to the system exists 

(System of Linear Equations, 2012). 

There are numerous methods for solving a system of equations, the simplest of 

which is to repeatedly eliminate variables (System of Linear Equations, 2012).  In this 

method, the first equation is solved for one of the variables in the remaining equations 

and the resulting relationship is then substituted into the remaining equations (System of 
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Linear Equations, 2012).  The NZE equation is solved in terms of system size.  This 

relationship was then substituted into the NS equation.  Once the final equation is 

obtained, a dictionary is produced to define each variable. 

The inputs to the function combination process are the decomposed NZE 

equation, decomposed NS equation in factor notation, and estimation variables used to 

represent the estimation technique for each model element.  The estimation technique and 

resulting variables for model elements, which are not constants, are outlined in Table 12.  

The equation resulting from the combination process is the model utilized by the Model 

Evaluation and Model Application phases. 

Table 12 – Estimation Variables 
Element New Variables Source 

Energy  
Produced 

Output to Size Ratio[installation] * System Size  (Stafford, Robichaud, 

& Mosey, 2011)  

Benchmark  
Energy Use 

Benchmark EUI [type,zone] * Area 
(PNNL, 2010)  

Inverter Cost Unit Inverter Cost * System Size (NREL, 2012)  

Benchmark  
Energy Cost 

Benchmark EUI [type,zone] * Area * Average 
Electric Rate [state] 

 (Andrews, 2009)  

Construction  
Premium 

Construction Premium[type,zone,perc red] * 
(1+SIOH) * (1+Contingency) 

(Jiang et al, 2011)  

Benchmark  
Cost 

Benchmark Unit Cost[type] *  Size Factor * 
Location Factor * Escalation Factor * Area * 
(1+SIOH) * (1+Contingency) 

(AFCESA, 2007)  

PV System  
Installed Cost 

Unit Installed PV Cost[sys size] * System Size * 
(1+SIOH) * (1+Contingency) 

(Goodrich, James, & 

Woodhouse, 2012)  

Inverter Installed  
Cost 

Unit Installed Inverter Cost * System Size 
(NREL, 2012) 

PV System  
O&M Cost 

Unit PV O&M Cost[sys size] * System Size 
(NREL, 2012) 

 



 

91 

3.2. Model Evaluation 

This section outlines the methodologies and actions necessary to evaluate the 

cost-effective (CE) net-zero energy (NZE) model.  This phase is divided into four distinct 

processes; each will be discussed in the following subsections. 

3.2.1. Sensitivity Analysis. 

This section performs a sensitivity analysis of the CE NZE model to determine 

which input variables contribute most to the uncertainty of the model’s output.  The 

process utilized to conduct the sensitivity analysis is one-at-a-time (OAT) analysis.   A 

prerequisite to performing an OAT analysis is that all input variables are independent.  

As this project utilizes deductive reasoning through decomposition, all resulting variables 

are independent.  Prior to performing the analysis, the CE NZE model must be coded into 

Microsoft Excel.  Model coding transforms the mathematical equation into a computer-

based analysis tool (Council for Regulatory Environmental Modeling, 2009).  A separate 

Excel worksheet was developed for each variable being considered; this allows that 

variable to be changed by plus and minus 10 percent, in one percent increments, while 

holding all other variables constant.  The calculated NS value is computed for each 

percent change in each variable’s input.  The range of values for each variable is plotted 

together using a scatter plot.  A line was fitted to each variable’s NS distribution using 

the Trend Line function in Excel.  The slope of these lines was annotated and 

subsequently used to rank the variables. 
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The inputs to the OAT process are the CE NZE model, list of uncertain variables, 

economic factor values, and values for the selected base-case.  The list of uncertain 

variables is provided in Table 13.   

Table 13 – Uncertain Variables for Sensitivity Analysis 
Variable 

Unit Inverter Installed Cost 
Benchmark EUI 
Construction Premium 
Output to Size Ratio 
Average Electric Rate 
Annual Arithmetic Degradation 
Benchmark Unit Cost 
Unit PV Installed Cost 
Unit PV O&M Cost 

 

The base-case will be a 53,628 square foot medium office building constructed at 

Beale AFB, California.  The values for model inputs are provided in Table 14.  The 

output of this process will be used to answer Investigative Question 3.   
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Table 14 – Base-Case Variable Values for Sensitivity Analysis 
Variable Value 

Inverter Useful Life 15 
Unit Inverter Installed Cost 0.37 
Benchmark EUI 13.98 
Percent Reduction 0.545 
Output to Size Ratio 1374 
Average Electric Rate 14.305 
Annual Arithmetic Degradation 0.005 
Construction Premium 0.066 
Benchmark Unit Cost  120 
Size Adjustment 0.93 
Location Adjustment 1.28 
Escalation Adjustment 1* 
SIOH 0.057 
Contingency 0.05 
Unit PV Installed Cost 3557.17 
Unit PV O&M Cost 23.26 
* This will be assumed for all remaining base-cases 

 

3.2.2. Construction Premium Comparative Analysis. 

This section performs a comparative analysis of construction premium to 

determine if commercial facility incremental construction cost data can be used to predict 

the incremental construction cost for Department of Defense (DoD) facility types.  The 

analysis is divided into two processes: curve interpolation and correlation analysis.  Each 

will be discussed in the following subsections. 
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3.2.2.1. Curve Interpolation. 

This section fits a curve to construction premium data obtained for commercial 

facilities.  Curve fitting can use interpolation or smoothing.  Interpolation requires the 

curve to go through data points, while smoothing determines a best-fit (Curve fitting, 

2012).  As the curves being fit only include a single data point, interpolation is used.  To 

interpolate a curve for each facility type in each climate zone, a generalized form of the 

equation being fitted was coded into Microsoft Excel.  The solver tool in Excel was then 

used to determine the remaining unknown variable in the general equation; this insures 

the resulting curve goes through the provided data point.  Finally, the curve developed for 

each facility type in each climate zone was annotated. 

The inputs required for the curve interpolation process are the data points for the 

commercial facility types being studied, generalized form of the equation being fit, and 

additional constraints available from literature review.  The data points for Small Office, 

Medium Office, and Small Hotel facility types are provided in Table 10.  Due to the Law 

of Diminishing Return, there is a theoretical reason to select a function with an 

exponential form (Igor Pro, na).  This relationship is modeled in the exponential approach 

function provided in Equation 14 (Elert, 2012).   

𝑦 =  𝑎 ∗ (1 − 𝑛−𝑏𝑥) + 𝑐 (14) 

With the form of the equation specified, the coefficients must be determined using 

additional constraints (Igor Pro, na).  In general, a curve of degree n, requires n+1 

constraints to fit a curve.  These constraints are provided by the following two facts: 

• At zero percent energy reduction, there should be a zero percent construction 
premium.  This dictates that the function must go through the origin. 
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• A facility, while maintaining the baseline’s level of indoor environmental 
comfort, can never reach zero energy demand.  This constraint sets the natural 
asymptote of the function equal to one 

These constraints set the values of a equal to one and c equal to zero in Equation 14.  As 

shown in Figure 22, the selection of the base of the exponential function is irrelevant, as 

the value of b will adjust the fitted curve to match the provided data point.  As such, base 

e was chosen for this research.   

 

 
Figure 22 - Comparison of Chosen Exponential Bases 

  
 

Equation 14 contains Construction Premium as the independent variable.  In order 

to obtain an estimate for Construction Premium directly, the equation must be solved in 

terms of Percent Reduction.  The new equation is provided in Equation 15 and is the one 

coded into Excel in the process outlined above. 

𝐶𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛 𝑃𝑟𝑒𝑚𝑖𝑢𝑚 =  �−
ln (1 − 𝑃𝑒𝑟𝑐𝑒𝑛𝑡 𝑅𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛)

b
� (15) 

  

b
Construction 

Premium
Percent 

Reduction b
Construction 

Premium
Percent 

Reduction
15.40 0.045 0.5 6.69 0.045 0.5

0.01 0.142756265 0.01 0.142756087
0.02 0.265133179 0.02 0.265132874
0.03 0.370040022 0.03 0.370039629
0.04 0.459970756 0.04 0.459970307
0.05 0.537063314 0.05 0.537062833
0.06 0.603150427 0.06 0.603149931
0.07 0.65980319 0.07 0.659802694
0.08 0.708368416 0.08 0.70836793

Curve Fit with Base e Curve Fit with Base 10



 

96 

The outputs of this process are curves which can be used to determine the 

Construction Premium at any Percent Reduction from baseline.  An upper limit of 70 

percent has been assigned to the interpolation, as that is the maximum energy reduction 

achievable utilizing currently available technology and construction techniques (National 

Science and Technology Council, 2008).    The developed curves are utilized as an input 

into the correlation analysis process. 

3.2.2.2. Correlation Analysis. 

This section performs a correlation analysis to determine if the data from 

commercial facilities can be used to predict the construction premium associated with an 

energy reduction from baseline for Department of Defense (DoD) facilities.  The process 

which will be used to determine whether commercial facility data can be used to predict 

the construction premium of DoD facilities is cross-validation.  A cross-validation is an 

evaluation method to determine how well a model predicts data it was not fitted to 

(Schneider, 1997).  This research performs a cross-validation utilizing a Pearson 

correlation analysis (McClave, Benson, & Sincich, 2011).  A scatter plot was constructed 

by graphing, in Microsoft Excel, the values predicted by the construction premium curves 

on the x-axis and the values from the EISA study on the y-axis (Council for Regulatory 

Environmental Modeling, 2009).   

The Coefficient of Determination, R2, is obtained by fitting a straight line through 

the data points (Patten, 2009).  R2 is interpreted as a certain percentage better than no 

relationship (Patten, 2009).  An observed significance level will not be reported for this 

correlation as there are only eight data points and no knowledge regarding the 
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distribution of the correlations.  The inputs required for the Pearson correlation analysis 

are the construction premium curves from Section 3.2.2 and the data points extracted 

from the EISA study.  The data points from the study are provided in Table 15. 

Table 15 – EISA Construction Premium Data Points 
 

Facility 
Type 

Climate  
Zone 

Benchmark 
EUI 

Percent  
Reduction 

Observed  
Construction 

Premium 
UEPH 1_moist 14.97 0.3517 0.0468 
UEPH 2_moist 15.15 0.3517 0.0587 
UEPH 3_dry 13.97 0.509 0.0441 
UEPH 4_moist 15.35 0.3768 0.052 
UEPH 4_marine 13.86 0.4152 0.0451 
BG HQ 4_moist 15.35 0.314 0.0468 
BG HQ 4_marine 13.86 0.3175 0.0587 
BG HQ 6_moist 17.32 0.2931 0.0441 

 

The strength of the correlation coefficient will statistically determine if the 

commercial facility construction premium curves can be used to predict the values for 

DoD facility types.  The output of this process will be used to answer Investigative 

Question 1. 

3.2.3. Corroboration Analysis. 

This section performs a corroboration analysis of both the construction premium 

curves and cost-effective (CE) net-zero energy (NZE) model.  Corroboration data for this 

research is limited; therefore, a combination of qualitative and quantitative methods is 

used.  In general, quantitative techniques are used to generate graphs of model outputs, 
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which are then qualitatively compared to best-available understanding.  More detail 

concerning corroboration analysis can be found in Section 2.8.  Each analysis is 

discussed in the following subsections. 

3.2.3.1. Construction Premium Corroboration. 

This section determines how well the construction premium curves generated in 

Section 3.2.2 align with best-available understanding.  The process utilized to generate 

the graph for comparison is similar to one-at-a-time analysis.  First, the construction 

premium curves are coded into Microsoft Excel.  Next, the curves are used to generate 

values for a 0 to 70 percent energy reduction from baseline; the values will be calculated 

in increments of five.  These values will then be plotted using a line graph in Excel. 

The inputs required to generate the three graphs are the construction premium 

curves from Section 3.2.2 for Small Office, Medium Office, and Small Hotel facility 

types at Beale Air Force Base, California; Beale AFB is in Climate Zone three-dry.  The 

graphs will be compared to best-available understanding and used to answer Investigative 

Question 2. 

3.2.3.2. CE NZE Model Corroboration. 

This section determines how well the cost-effective (CE) net-zero energy (NZE) 

model aligns with best-available understanding.  The process utilized to generate the 

graph for model corroboration is performed in two phases.  The first phase assesses the 

net-savings (NS) in response to a change in percent energy reduction and will be 
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performed three times: one for the overall NS, one for the NS related to energy reduction, 

and one for the NS related to energy production.  The second phase assesses the NS in 

response to a change in facility size. 

In the first phase, the NS values are calculated for a 0 to 70 percent energy 

reduction from baseline, in increments of five percent.  In the second phase, the NS 

values are calculated for a facility size range of 30,000 to 60,000 square feet, in 

increments of 5,000 square feet.  The NS values from both phases will be graphed.  The 

inputs required to generate the graphs are the energy reduction and energy production 

portions of the CE NZE model, economic factor values from Section 3.3.1, and base-case 

values.  The base-case will be a 53,628 square foot medium office building constructed at 

Beale Air Force Base, California; the values are provided on the next page in Table 16.  

The graphs are compared to best-available understanding and used to answer 

Investigative Question 2. 
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Table 16 – Base-Case Estimates for CE NZE Model Corroboration 
Variable Value 

Inverter Useful Life 15 
Unit Inverter Installed Cost 0.37 
Benchmark EUI 13.98 
Percent Reduction 0.545 
Output to Size Ratio 1374 
Average Electric Rate 14.305 
Annual Arithmetic Degradation 0.005 
Construction Premium -LN(1-PercRed)/11.93 
Benchmark Unit Cost  120 
Size Adjustment 0.93 
Location Adjustment 1.28 
SIOH 0.057 
Contingency 0.05 
Unit PV Installed Cost 3557.17 
Unit PV O&M Cost 23.26 

 

3.2.4. Uncertainty Analysis. 

This section provides a quantification of the uncertainty associated with making 

decisions based on the output from the cost-effective (CE) net-zero energy (NZE) model.  

Monte Carol simulation is the process utilized to perform the uncertainty analysis.  More 

information regarding uncertainty analysis and Monte Carlo simulation is provided in 

Section 2.8.  The simulation begins with the model being coded into Microsoft Excel., 

with a specific column for each variable included in the analysis.  Next, the Random 

Number Generator (RAND) in Excel is used to calculate 10,000 values of each variable 

with a normal distribution.  Then the RAND function is used to generate 10,000 normally 
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distributed numbers between zero and one.  Equation 4 is then utilized to generate the 

triangularly distributed variates.  The net-savings (NS), cumulative NS, and Incremental 

Capital Investment (ICI) values are then calculated for each of the 10,000 scenarios.  A 

plot of cumulative NS is produced to illustrate convergence and a histogram is produced 

for both the NS and ICI distributions.  A Kolmogorov-Smirnov-Lilliefors (KSL) test is 

subsequently performed for both distributions to prove normality.  Next, a cumulative 

distribution function is produced for both distributions and utilized to discuss their 

respective variance.  Finally, descriptive statistics of mean, median, minimum, maximum, 

and standard deviation of the NS and ICI distributions is calculated using the Descriptive 

Statistics tool in Excel.   

The results from the Sensitivity Analysis process of Section 3.2.1 is used to 

reduce the number of variables included in this analysis.  Construction Premium is not 

included in the uncertainty analysis as there are no sources of data regarding its error or 

probability distribution.  The variables which are included are Benchmark Energy Use 

Intensity, Output to Size Ratio, Average Electric Rate, PV Installed Unit Cost, and 

Benchmark Unit Cost.  The inputs required to assess the model’s uncertainty are the CE 

NZE model, base-case values, and variable probability distributions.   

The base-case is a 53,628 square foot medium office building constructed at 

Beale Air Force Base, California; the base-case values and variable probability 

distributions are provided in Table 17.  The standard deviations and distributions 

associated with the base-case are utilized to answer Investigative Question 4. 
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Table 17 – Base-Case Estimates for Uncertainty Analysis 
Variable Value Distribution Uncertainty 

Inverter Useful Life 15 None  
Unit Inverter Installed Cost 0.37 None  
Benchmark EUI 13.98 Triangular ME = 10% 
Percent Reduction 0.545 None  
Output to Size Ratio 1374 Triangular ME = 10% 
Average Electric Rate 14.305 Triangular High = 16.24 

Low = 12.37 
Annual Arithmetic Degradation 0.005 None  
Construction Premium 0.066 None  
Benchmark Unit Cost 120 Normal Std Dev = 42.71  
Size Adjustment 0.93 None  
Loc Adjustment  1.28 None  
SIOH 0.057 None  
Contingency 0.05 None  
Unit PV Installed Cost 3557.17 Normal Std Dev = 673 
Unit PV O&M Cost 23.26 None  

 

3.3. Model Application. 

This section outlines the methodologies and actions necessary to apply the cost-

effective (CE) net-zero energy (NZE) model in order to determine which installations are 

the most likely to achieve cost-effective NZE.  This phase is divided into three distinct 

processes; each will be discussed in the following subsections. 

  



 

103 

3.3.1. Geospatial Analysis. 

This section utilizes geospatial analysis to calculate and summarize all 

geospatially related variables needed for inputs to the cost-effective (CE) net-zero energy 

(NZE) model.  ArcGIS is used to perform the geospatial analysis for this project.  It has 

an extensive selection of data management and geospatial analysis tools; each of which 

are outlined in Section 2.9.   

The process begins with all shapefiles being added to a geodatabase.  Then, the 

county shapefile and climate zone table are combined and reconciled in Microsoft Excel.  

The combination begins with the attribute table from the county shapefile and the climate 

zone table being added to separate worksheets.  A formula then compares the two tables 

and adds the climate zone to the county shapefile’s attribute table for each county.  When 

the formula encounters an error, the tables will be reconciled.  Once all counties have a 

climate zone attached, a field is added to the states shapefile to represent the Census 

Regions described in the Federal Energy Management Program (FEMP) Annual 

Supplement; the select by attribute tool is used to populate this field.  Once complete, the 

states shapefile is modified to remove polygons outside of the contiguous U.S. (CONUS).   

Next, model builder is used to perform all actions required to calculate and summarize 

the variables.  Once all calculations have been performed, a report is generated to extract 

the calculated values into tabular format.  Finally, the Location Adjustment Factor for 

each installation is added to this table. 

The inputs required for the above geospatial analysis are four shapefiles, three 

non-spatial tables, and the model representing all necessary tools and actions to calculate 
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and summarize variable values for each CONUS installation.  The shapefiles are 

provided in Table 18. 

Table 18 – Shapefile Data Requirements 
Shapefile Source 

US States US Census Bureau 
US Counties US Census Bureau 
Zip_Codes US Census Bureau 
DoD Installations US Census Bureau 

 

The non-spatial table which dictates the climate zone for each county in the US is 

obtained from the Building America Program.  The non-spatial table which dictates the 

Census Region of each state in the U.S. is obtained from the FEMP Annual Supplement.  

The non-spatial table which provides the Location Adjustment Factor for each 

installation was obtained from Table 4.1 of Unified Facility Criteria 3-701-01.  

The model is described graphically in Figure 23.  The table resulting from this 

analysis is used as input to the PV Watts calculation and installation comparative analysis 

processes. 
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Figure 23 – Model of Tools and Actions for Geospatial Analysis 

3.3.2. PV Watts Calculation. 

This section calculates the output to size ratio for the specified photovoltaic (PV) 

system at each Contiguous U.S. (CONUS) installation.  PV Watts is used to calculate the 

time-series power produced by a crystalline-silicon PV panel at each CONUS United 

States Air Force (USAF) installation.  The location of each installation is determined in 

the PV Watts Version 2 map tool by zip code.  Solar resource and climactic data for each 

location is then imported into PV Watts.  Next, the characteristics of the panel are set; 

these will remain constant for all installations.  Finally, a simulation will be run to 

estimate the annual alternating current power output from a 1 kilowatt rated PV system at 

each installation. 
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The inputs necessary for the PV Watts calculations are the zip code for each 

installation, system configuration, and overall derate factor.  The system configuration 

and derate factor are provided in Figure 24.  The output from the process outlined above 

is utilized as an input to the installation comparative analysis process. 

 

 
Figure 24 – PV System Configuration and Derate Factor 

3.3.3. Installation Comparative Analysis. 

This section ranks contiguous U.S. (CONUS) installations in terms of the 

likelihood of achieving a cost-effective (CE) net-zero energy (NZE) facility.  The effect 

of location on net-savings (NS) is evaluated by conducting a comparative analysis.  

Comparative analysis looks at two or more similar alternatives to determine their 

similarities and differences (Reutlinger, Schurz, & Hüttemann, 2011).  In economics, this 

type of research is often performed by using a Ceteris Paribus (CP) clause (Bierens & 

Swanson, 1998).  In Latin, CP literally means “with all things being equal.”  To perform 

this analysis, the CE NZE model is coded into Microsoft Excel with one worksheet for 

each facility type; each installation is a row in the three worksheets.  Next, the base-case 
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values which are not geospatially related are copied for each installation.  The 

VLOOKUP function in Excel is utilized to populate all geospatial variable values for 

each installation.  Once all values are populated, the NS is calculated for each 

installation.  The NS values are then imported into Arc GIS and an inverse distance 

weighting interpolation is performed on the NS values for each facility type.  In parallel 

with the interpolation, the NS values are imported into another Excel spreadsheet and the 

rank function used to list the installations from highest to lowest in terms of NS.   

In order to determine if the rankings between facility types are statistically 

consistent, three correlation analyses are conducted, one for each facility type 

combination.  The correlation analysis is performed utilizing the Spearman’s Rank 

Correlation Coefficient, rs.  The first step in calculating rs is to average any tied rankings.  

The square of the differences between the rankings of the facility types being analyzed 

are then calculated; these are summed and utilized in Equation 16 (McClave, Benson, & 

Sincich, 2011). 

𝑟𝑠 = 1 −
6 ∗ ∑𝑑2

𝑛 ∗ (𝑛2 − 1)
 16 

where ∑𝑑2 is the sum of squared differences and n is the number of observations.  The 

significance of the correlation is then assessed by constructing a hypothesis test.  The null 

hypothesis is that the population rank correlation coefficient, ρs, is equal to zero and the 

alternative hypothesis is that ρs is greater than zero; this is termed a one-tailed test 

(McClave, Benson, & Sincich, 2011).  The test statistic in Equation 17 is then calculated 

(McClave, Benson, & Sincich, 2011). 
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𝑡 =
𝑟 ∗ √𝑛 − 2 
√1 − 𝑟2

 17 

where r is the sample correlation coefficient, n is the number of data points, and the 

Student’s t-distribution depends on n – 2 degrees of freedom.  Once the test statistic is 

calculated, the p-value is reported utilizing the tdist function in Excel.  The p-value is the 

extent to which the calculated test statistic disagrees with the null hypothesis and is often 

called the observed significance level (McClave, Benson, & Sincich, 2011).  The p-value 

is interpreted as the probability of observing a correlation in the population that is equal 

to or larger than the one calculated from the sample data (McClave, Benson, & Sincich, 

2011).   

The inputs required for the comparative analysis are the CE NZE model, 

installation report, output to size ratios, model representing all necessary tools and actions 

required for the IDW interpolations, economic factor values, and variable estimates.  The 

model is described graphically in Figure 25. 
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Figure 25 – Model for IDW Interpolation 

 

The variable estimates are provided on the next page in Table 19.  When the 

variable changes by facility type, it will be listed in the order: Small Office, Medium 

Office, and Small Hotel.  The variables which are geospatially related will be stated as 

such.  The installation report and output to size ratios are available in Appendices B and 

C respectively.  The economic factor values were calculated in Section 3.1.3.  The IDW 

raster files, installation rankings, and rank correlations are utilized to answer 

Investigative Question 5. 
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Table 19 – Base-Case Variable Estimates for Installation Comparative Analysis 
Variable Value 

Unit Inverter Installed Cost 370/kW 
Benchmark EUI Geospatial - Lookup 
Percent Reduction Geospatial - Lookup 
Zone Geospatial - Lookup 
Area 5502, 53628, 43202 
OSR Geospatial – Lookup 
Installation Variable 
Average Electric Rate Geospatial - Lookup 
Annual Arithmetic Degradation 0.5% 
Construction Premium Geospatial - Lookup 
Benchmark Unit Cost 120, 120, 102 
Size Adjustment Factor 1.17, 0.93, 0.99 
Location Adjustment Factor Geospatial - Lookup 
SIOH 5.7% 
Contingency 5% 
Unit PV Installed Cost Size < 100 kW – $4,287.79/kW 

Size >= 100kW - $3,557.17/kW 
Unit PV O&M Cost Size < 100 kW – $25.19/kW 

Size >= 100kW - $23.26/kW 
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IV. Analysis and Results 

This chapter presents the results of the phases described in Chapter 3.  The 

outputs from individual processes are utilized as inputs to other processes and to answer 

the investigative questions outlined in Chapter 1. 

4.1. Fundamental Equation Development 

This section presents the results from the model development phase.  The output 

of this phase was utilized by processes in the Model Evaluation and Model Application 

phases.  Figure 26 modifies the life-cycle cost (LCC) model from Equation 2 to apply to 

the benchmark facility. 

 
Figure 26 – Benchmark LCC Model 
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Figure 27 modifies the LCC model from Equation 2 to apply to the net-zero energy 

(NZE) facility. 

 
Figure 27 – NZE LCC Model 
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After incorporating the NS metric and canceling like costs the resulting fundamental 

equation is presented in Equation 18.  The mathematical model for the NZE fundamental 

equation is provided in Equation 19. 

𝑃𝑊�(PV System Residual Value) + (Energy Cost Savings) −
�(𝐸𝑛𝑒𝑟𝑔𝑦 𝐸𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 𝐼𝑛𝑐𝑟𝑒𝑚𝑒𝑛𝑡𝑎𝑙 𝐶𝑜𝑠𝑡) −  (PV Ready Incremental Cost) −

 (PV System Installed Cost) − (PV System Replacement Cost)−
(PV System OM&𝑅 𝐶𝑜𝑠𝑡) �� ≥ 0  

(18) 

 
 𝑁𝑍𝐸 → 𝐸𝑛𝑒𝑟𝑔𝑦𝑈𝑠𝑒 − 𝐸𝑛𝑒𝑟𝑔𝑦𝑃𝑟𝑜𝑑𝑢𝑐𝑒𝑑 = 0 (19) 

4.2. Function Decomposition 

This section presents the results from the Function Decomposition process.  It 

graphically shows the decomposition of the fundamental equations into independent and 

predictable elements.  It also lists and provides justification for the model elements which 

were not included in the final model.  Finally, it presents the resulting net-zero energy 

(NZE) and net-savings (NS) equations. 

Figure 28 depicts the decomposition of the NZE fundamental equation. 

 

 
Figure 28 – NZE Decomposition 
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Figure 29 depicts the decomposition of the Capital Investment life-cycle cost 

(LCC) element. 

 

 
Figure 29 – Capital Investment Decomposition 

 

Figure 30 depicts the decomposition of the PV System Replacement LCC 

element. 

 

 
Figure 30 –Replacement Cost Decomposition 
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Figure 31 depicts the decomposition of the PV System Replacement LCC 

element. 

 

 
Figure 31 – Residual Cost Decomposition 

 

Figure 32 depicts the decomposition of the Energy Cost Savings LCC element. 

 
Figure 32 – Energy Savings Decomposition 
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Figure 33 depicts the decomposition of the PV System Replacement LCC 

element. 

 
Figure 33 – OM&R Cost Decomposition 

 

Table 20 summarizes the costs removed from the final model because they did not 

significantly contribute to NS.  

Table 20 – Insubstantial Cost Elements 
Element Reason 

PV Ready Cost Some structural support cost, but most is design awareness 
Panel Replacement Cost 25 year warranty matches service period of LCCA 
Meter Replacement Cost 25-30 year life matches service period of LCCA 
BOS Replacement Cost Many are sunk costs, remainder are high life components 
Panel SV 25-30 year life matches service period of LCCA 
Meter SV 25-30 year life matches service period of LCCA 
BOS SV Sunk costs 
PV System Disposal Cost PV system will remain in place after study 
PV System Repair Cost Major components remain under warranty during study 

 

Equation 20 is the resulting decomposed NZE equation. 

 

𝐸𝑛𝑒𝑟𝑔𝑦 𝑃𝑟𝑜𝑑𝑢𝑐𝑒𝑑 = 𝐵𝑒𝑛𝑐ℎ𝑚𝑎𝑟𝑘 𝐸𝑛𝑒𝑟𝑔𝑦 𝑈𝑠𝑒 ∗ (1 − 𝑃𝑒𝑟𝑐𝑒𝑛𝑡 𝑅𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛) (20) 
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Equation 21 is the resulting decomposed and simplified version of the NS 

equation. 

 

𝑃𝑊 �−�(𝐶𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛 𝑃𝑟𝑒𝑚𝑖𝑢𝑚 ∗ 𝐵𝑒𝑛𝑐ℎ𝑚𝑎𝑟𝑘 𝐶𝑜𝑠𝑡 + 𝑃𝑉 𝑆𝑦𝑠𝑡𝑒𝑚 𝐶𝑜𝑠𝑡) −

(𝐼𝑛𝑣𝑒𝑟𝑡𝑒𝑟 𝑅𝑒𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡 𝐶𝑜𝑠𝑡) + � �𝑆𝑡𝑢𝑑𝑦 𝑃𝑒𝑟𝑖𝑜𝑑− 𝐼𝑛𝑣 𝑈𝑠𝑒𝑓𝑢𝑙 𝐿𝑖𝑓𝑒
𝐼𝑛𝑣 𝑈𝑠𝑒𝑓𝑢𝑙 𝐿𝑖𝑓𝑒

∗

𝐼𝑛𝑣𝑒𝑟𝑡𝑒𝑟 𝐶𝑜𝑠𝑡� + (𝐵𝑒𝑛𝑐ℎ𝑚𝑎𝑟𝑘 𝐸𝑛𝑒𝑟𝑔𝑦 𝐶𝑜𝑠𝑡 −

𝑇𝑜𝑡𝑎𝑙 𝑃𝑉 𝐷𝑒𝑔𝑟𝑎𝑑𝑎𝑡𝑖𝑜𝑛 𝐶𝑜𝑠𝑡) − (𝑃𝑉 𝑆𝑦𝑠𝑡𝑒𝑚 𝑂&𝑀 𝐶𝑜𝑠𝑡)� ≥ 0  

(21) 
 

4.3. Engineering Economics 

This section presents the results from the incorporation of engineering economic 

factors into the decomposed and simplified version of the net-savings (NS) equation.  It 

also presents the calculated values for all economic factors utilized in the new equation.   

Equation 22 is the resulting NS equation with economic factor notation included.   

 

𝑆𝑃𝑉𝑑,𝑠𝑡𝑝 ∗ �
𝑆𝑡𝑢𝑑𝑦 𝑃𝑒𝑟𝑖𝑜𝑑− 𝐼𝑛𝑣 𝑈𝑠𝑒𝑓𝑢𝑙 𝐿𝑖𝑓𝑒

𝐼𝑛𝑣 𝑈𝑠𝑒𝑓𝑢𝑙 𝐿𝑖𝑓𝑒
∗ 𝐼𝑛𝑣𝑒𝑟𝑡𝑒𝑟 𝐼𝑛𝑠𝑡𝑎𝑙𝑙𝑒𝑑 𝐶𝑜𝑠𝑡� +

(𝑈𝑃𝑉𝑒𝑑,𝑠𝑡𝑝 − 𝑈𝑃𝑉𝑒𝑑,𝑝𝑐𝑝) ∗ (𝐵𝑒𝑛𝑐ℎ𝑚𝑎𝑟𝑘 𝐸𝑛𝑒𝑟𝑔𝑦 𝐶𝑜𝑠𝑡) − 𝐴𝑃𝑉𝑑,𝑠𝑝 ∗ 𝑆𝑃𝑉𝑑,𝑝𝑐𝑝 ∗
�(1 − 𝑃𝑒𝑟𝑐𝑒𝑛𝑡 𝑅𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛) ∗ 𝐵𝑒𝑛𝑐ℎ𝑚𝑎𝑟𝑘 𝐸𝑛𝑒𝑟𝑔𝑦 𝐶𝑜𝑠𝑡 ∗

𝐴𝑟𝑖𝑡ℎ𝑚𝑒𝑡𝑖𝑐 𝐷𝑒𝑔𝑟𝑎𝑑𝑎𝑡𝑖𝑜𝑛� − �𝑆𝑃𝑉𝑑,𝑝𝑐𝑝� ∗ (𝐶𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛 𝑃𝑟𝑒𝑚𝑖𝑢𝑚 ∗
𝐵𝑒𝑛𝑐ℎ𝑚𝑎𝑟𝑘 𝐶𝑜𝑠𝑡 + 𝑃𝑉 𝑆𝑦𝑠𝑡𝑒𝑚 𝐶𝑜𝑠𝑡) − 𝑆𝑃𝑉𝑑,𝐼𝑛𝑣𝐿𝑖𝑓𝑒 ∗ 𝑆𝑃𝑉𝑑,𝑝𝑐𝑝 ∗

(𝐼𝑛𝑣𝑒𝑟𝑡𝑒𝑟 𝐼𝑛𝑠𝑡𝑎𝑙𝑙𝑒𝑑 𝐶𝑜𝑠𝑡) − �𝑈𝑃𝑉𝑑,𝑠𝑡𝑝 − 𝑈𝑃𝑉𝑑,𝑝𝑐𝑝� ∗
(𝑃𝑉 𝑆𝑦𝑠𝑡𝑒𝑚 𝑂&𝑀 𝐶𝑜𝑠𝑡) ≥ 0  

(22) 
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Table 21 presents the values for each non-energy economic factor.  The APV 

factor was calculated using its formula, while all others were determined using tables. 

Table 21 – Non-Energy Economic Factor Values 
Factors Value 

SPVd,stp 0.450 
APVd,sp 182.434 
SPVd,pcp 0.943 
SPVd,InvUL 0.642 
UPVd,stp 18.33 
UPVd,pcp 1.91 

 

Table 22 presents the values for each energy economic factor.  All factors were 

determined using tables. 

Table 22 – Energy Economic Factor Values 
Region 

 

UPVe
region,d,stp UPVe

region,d,pcp 
1 17.05 1.80 
2 17.31 1.88 
3 18.40 1.88 
4 17.24 1.91 

4.4. Function Combination 

This section presents the results from the function combination process.  It also 

presents the net-savings (NS) equation after parametric estimation variables were 

incorporated and the two functions were combined using substitution.  The resulting 

equation is the final model for the research.  Finally, a variable dictionary is presented to 

define all variables in the final model. 
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Equation 23 represents the final cost-effective (CE) net-zero energy (NZE) model 

which will be utilized during the evaluation and analysis phases of this research. 

 

𝑆𝑃𝑉𝑑,𝑠𝑡𝑝 ∗ �
𝑠𝑝− 𝐼𝑛𝑣 𝑈𝐿
𝐼𝑛𝑣 𝑈𝐿

∗ 𝑈𝑛𝑖𝑡 𝐼𝑛𝑣 𝐼𝐶 ∗ 𝐵𝑒𝑛𝑐ℎ 𝐸𝑈𝐼[𝑡𝑦𝑝𝑒,𝑧𝑜𝑛𝑒]∗(1−𝑃𝑒𝑟𝑐 𝑅𝑒𝑑)∗𝐴𝑟𝑒𝑎
𝑂𝑆𝑅[𝑧𝑖𝑝] � +

(𝑈𝑃𝑉𝑒𝑑,𝑠𝑡𝑝,𝑟𝑒𝑔𝑖𝑜𝑛 − 𝑈𝑃𝑉𝑒𝑑,𝑝𝑐𝑝,𝑟𝑒𝑔𝑖𝑜𝑛) ∗ (𝐵𝑒𝑛𝑐ℎ 𝐸𝑈𝐼[𝑡𝑦𝑝𝑒, 𝑧𝑜𝑛𝑒] ∗ 𝐴𝑟𝑒𝑎 ∗
𝐴𝑣𝑔 𝐸 𝑅𝑎𝑡𝑒[𝑠𝑡𝑎𝑡𝑒]) − 𝐴𝑃𝑉𝑑,𝑠𝑝 ∗ 𝑆𝑃𝑉𝑑,𝑝𝑐𝑝 ∗

�(1 − 𝑃𝑒𝑟𝑐 𝑅𝑒𝑑) ∗ 𝐵𝑒𝑛𝑐ℎ 𝐸𝑈𝐼[𝑡𝑦𝑝𝑒, 𝑧𝑜𝑛𝑒] ∗ 𝐴𝑟𝑒𝑎 ∗ 𝐴𝑣𝑔 𝐸 𝑅𝑎𝑡𝑒[𝑠𝑡𝑎𝑡𝑒] ∗
𝑃𝑉 𝐷𝑒𝑔� − 𝑆𝑃𝑉𝑑,𝑝𝑐𝑝 ∗ �𝐶𝑜𝑛 𝑃𝑟𝑒𝑚[𝑡𝑦𝑝𝑒, 𝑧𝑜𝑛𝑒] ∗ Bench UC[type] ∗

Size Adj Factor ∗ Loc Adj Factor[installation] ∗ Esc Factor ∗ Area ∗
�(1 + SIOH) ∗ (1 + Contingency)�

2
+ 𝑈𝑛𝑖𝑡 𝑃𝑉 𝐼𝐶[𝑠𝑖𝑧𝑒] ∗

𝐵𝑒𝑛𝑐ℎ 𝐸𝑈𝐼[𝑡𝑦𝑝𝑒,𝑧𝑜𝑛𝑒]∗(1−𝑃𝑒𝑟𝑐 𝑅𝑒𝑑)∗𝐴𝑟𝑒𝑎
𝑂𝑆𝑅[𝑧𝑖𝑝] ∗ (1 + SIOH) ∗ (1 + Contingency)� −

𝑆𝑃𝑉𝑑,𝐼𝑛𝑣 𝑈𝐿 ∗ 𝑆𝑃𝑉𝑑,𝑝𝑐𝑝 ∗ �𝑈𝑛𝑖𝑡 𝐼𝑛𝑣 𝐼𝐶 ∗ 𝐵𝑒𝑛𝑐ℎ 𝐸𝑈𝐼[𝑡𝑦𝑝𝑒,𝑧𝑜𝑛𝑒]∗(1−𝑃𝑒𝑟𝑐 𝑅𝑒𝑑)∗𝐴𝑟𝑒𝑎
𝑂𝑆𝑅[𝑧𝑖𝑝] � −

�𝑈𝑃𝑉𝑑,𝑠𝑡𝑝 − 𝑈𝑃𝑉𝑑,𝑝𝑐𝑝� ∗
�𝑈𝑛𝑖𝑡 𝑃𝑉 𝑂&𝑀[𝑠𝑖𝑧𝑒] ∗ 𝐵𝑒𝑛𝑐ℎ 𝐸𝑈𝐼[𝑡𝑦𝑝𝑒,𝑧𝑜𝑛𝑒]∗(1−𝑃𝑒𝑟𝑐 𝑅𝑒𝑑)∗𝐴𝑟𝑒𝑎

𝑂𝑆𝑅[𝑧𝑖𝑝] � ≥ 0  

(23) 
 

 

Table 23 on the next page is the variable dictionary for the CE NZE model. 
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Table 23 – CE NZE Model Dictionary 
Variable Description 

d Discount rate. 
stp Study period. 
region Census region for energy escalation rates. 
pcp Planning and construction period. 
sp Service period. 
Inv UL Useful economic life of inverter. 
Unit Inv IC Inverter installed cost per kilo-watt. 
Bench EUI Benchmark facility energy use per square foot. 
Type Facility type. 
Zone Building America climate zone of installation. 
Perc Red Percent energy reduction from benchmark facility. 
Area Total building floor area in square feet. 
OSR PV system AC power output per PV system rated size.  
Zip Zip code of installation. 
Installation Installation where building is located. 
Avg E Rate Average Electric Rate in dollars per kilo-watt-hr.  Obtained 

as average of EIAs Commercial and Industrial rates. 
State State in which installation is located. 
PV Deg Annual percent loss of PV system power output. 
Con Prem Construction premium of energy efficiency improvements. 
Bench UC Cost of benchmark facility per square foot. 
Size Adj Factor Size adjustment for normalized facility cost. 
Loc Adj Factor Location adjustment of normalized facility cost. 
Esc Factor Adjustment factor to convert normalized facility cost to 

base-date price. 
SIOH Supervision, inspection, and overhead cost for design and 

construction agent. 
Contingency Safety factor for construction cost. 
Unit PV IC Unit installed PV system cost. 
Unit PV O&M Unit cost to operate and maintain PV system. 
Size Size category of PV system. 
Econ Factors Present worth factors. 
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4.5. Sensitivity Analysis 

This section presents the results from the Sensitivity Analysis process.  It also 

presents a relative sensitivity plot of all uncertain variables in the cost-effective (CE) net-

zero energy (NZE) model.  Finally, the ranking of independent variables in terms of the 

need for quality data is presented. 

Figure 34 shows the relative sensitivity of the cost-effective (CE) net-zero energy 

(NZE) variables which are subject to uncertainty.  As illustrated, the Cost-Effective (CE) 

Net-Zero Energy (NZE) model is extremely sensitive to variability in model input values.  

For example, an increase of one percent in the average electric rate results in an increase 

of over 16,000 dollars in net-savings (NS).   

 

 
Figure 34 – Relative Sensitivity Plot 
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The model is most sensitive to the variability of inputs which impact the recurring 

benefit obtained by achieving NZE; this is because that variability is compounded over 

the 25 year study period.  The most critical variable in terms of the need for quality data 

is the average electric rate; this intuitively makes sense as the savings obtained from the 

energy efficiency improvements and the installation of a PV system are subject to the 

electric rate.  This is opposed to the impact of other variables which only reduce the 

savings from one of the above components. 

One of the benefits of sensitivity analysis is that it provides justification for the 

expenditure of resources which are required to obtain higher quality data.  Table 24 

highlights two areas of concern for United States Air Force (USAF) Civil Engineer (CE) 

leadership in trying to predict the NS of a potential ZEB.  They are the variables of 

Construction Premium and Benchmark Energy Use Intensity; both of which reduce NS 

by $5,300 for every one percent increase in value.   

Table 24 – Variable Sensitivity Rank 
Variable Slope Direction Rank 

Average Electric Rate $ 16,020.69 Positive 1 
OSR $  9,619.60 Positive 2 
PV Installed UC $ 8,327.68 Negative 3 
Benchmark UC $ 5,291.58 Negative 4 
Construction Premium $ 5,291.58 Negative 4 
Benchmark EUI $ 5,291.58 Negative 4 
PV O&M UC $ 948.01 Negative 7 
Inverter Installed UC $ 556.10 Negative 8 
Panel Degradation $ 419.73 Negative 9 

 
The USAF CE community has not produced benchmark facilities in order to 

develop quality energy use baselines.  The USAF also does not have an adequate 
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knowledge of the construction premiums required to reduce energy consumption in its 

facilities.  The above concerns are not limited to NZE construction, as they are 

fundamental to managing a construction project in order to minimize energy use. 

4.6. Construction Premium Comparative Analysis 

This section presents the results from the construction premium comparative 

analysis.  The construction premium curve interpolations are summarized and the 

resulting predictions for the data points obtained from the Energy Independence and 

Security Act (EISA) of 2009 study are presented.  Finally, the scatter plot which is 

utilized to calculate the Pearson Correlation Coefficient is presented. 

Table 25 summarizes the values of b for use in Equation 15 to predict 

construction premium given percent energy reduction from baseline. 
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Table 25 – Curve Interpolation Summary 
Small Office 

 

Medium Office 

 

Small Hotel 
Zone b Zone b Zone b 

1_moist 19.80 1_moist 14.38 1_moist 8.49 
1_dry 18.24 1_dry 14.38 1_dry 8.49 
2_moist 22.19 2_moist 13.91 2_moist 9.14 
2_dry 22.51 2_dry 14.30 2_dry 8.39 
3_moist 20.44 3_moist 12.33 3_moist 9.24 
3_dry 23.23 3_dry 11.93 3_dry 8.49 
3_marine 23.49 3_marine 13.35 3_marine 8.93 
4_moist 24.82 4_moist 14.07 4_moist 9.55 
4_dry 26.48 4_dry 14.01 4_dry 8.78 
4_marine 24.82 4_marine 13.55 4_marine 9.28 
5_moist 22.29 5_moist 13.46 5_moist 10.09 
5_dry 24.10 5_dry 13.77 5_dry 9.55 
5_marine 23.14 5_marine 13.61 5_marine 9.81 
6_moist 24.10 6_moist 14.15 6_moist 10.25 
6_dry 24.10 6_dry 14.15 6_dry 9.97 
7 21.60 7 16.21 7 10.53 
8 19.28 8 15.37 8 10.65 

 

Table 26 shows the predicted construction premium value for the Energy 

Independence and Security Act study data points. 
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Table 26 – Predicted Construction Premiums for EISA Data Points 
Energy  

Facility Type Zone 
Predicted 

Construction Premium 
Small Hotel 1_moist 0.051 
Small Hotel 2_moist 0.047 
Small Hotel 3_dry 0.083 
Small Hotel 4_moist 0.049 
Small Hotel 4_marine 0.057 
Small Office 4_moist 0.015 
Small Office 4_marine 0.015 
Small Office 6_moist 0.014 

 

Figure 35 shows the construction premiums from the EISA study on the y-axis 

and the predicted values on the x-axis.  

 

 
Figure 35 – Scatter Plot of Construction Premium 

 

As shown in the figure, the coefficient of determination for the correlation 

analysis is 0.0643.  This is interpreted as only 6.4 percent better than no relationship or 

alternatively that 6.4 percent of the variance in the construction premium for DoD 

facilities is explained by commercial facilities.  The lack of correlation means, for the 
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facility types studied, that the commercial facility data from the Advanced Energy Design 

Guides cannot be used to estimate the construction premiums for DoD facilities; the lack 

of correlation matches the Army’s EISA study conclusion that plug loads limit the energy 

reduction and increase the incremental construction cost for DoD facilities in relation to 

similar commercial facilities (Carpio & Soulek, 2011).  As the construction premium for 

DoD facilities cannot be estimated, an assumption must be made, for subsequent analysis 

conducted by this research, that commercial facilities are constructed on United States 

Air Force (USAF) installations through the Military Construction Program.  This 

assumption limits the applicability of specific model output values, but, as proven in 

Section 4.11, will not statistically impact the installation rankings.   

4.7. Corroboration Analysis 

This section presents the results from the corroboration of the construction 

premium and cost-effective (CE) net-zero energy (NZE) models.  The scatter plot for the 

construction premium curves and the two scatter plots for the CE NZE model are 

presented.  The corroboration of these models utilizes sources of information which were 

not used to construct them, thereby increasing their validity. 

The corroboration of the Construction Premium Curves utilizes findings from a 

study of current Net-Zero Energy and NZE Capable facilities in the U.S., which was 

conducted by the New Buildings Institute (NBI).  In this study, it was found that the 

typical Incremental Construction Cost due to energy efficiency improvements ranged 

from three to 10 percent (New Buildings Institute, 2012).  For this incremental cost, these 

buildings were able to achieve an energy reduction of approximately 60 percent.  
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Although the baseline used in the NBI study was the Commercial Building Energy 

Consumption Survey database, the Energy Use Intensity values associated with this 

baseline are similar to those produced by complying with the ASHRAE 90.1 – 2004 

baseline.   

As shown in Figure 36, the construction premium curves match the above 

findings.  The graph shows the incremental construction costs for small and medium 

office buildings to range from four to eight percent at 60 percent energy reduction.  The 

incremental construction cost for small hotels is a bit higher at 11 percent; the increase 

for hotels is explained by occupant behavior and the difficulty of reducing point loads in 

this facility type (Carpio & Soulek, 2011). 

 

 
Figure 36 – Construction Premium Corroboration Plot 
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The corroboration of the CE NZE model will utilize the law of diminishing 

returns, the fact that the fundamental step necessary to create a Zero-Energy Building 

(ZEB) is to drastically reduce energy consumption, and a finding from the NBI study that 

the vast majority of NZE-facilities were small buildings.  The law of diminishing returns 

dictates that cost savings will reduce with each incremental energy efficiency 

improvement (McIlvaine, et al., 1994).   

First, as shown in Figure 37, the Net-Savings (NS) associated with energy 

reduction is an increasing function until an approximate 60 percent reduction, where it 

reaches a maximum and then decreases rapidly.  This matches the understanding that 

each increment of energy efficiency improvement results in less savings.  Second, the 

figure shows that the components of the NS model corroborate well with the fundamental 

approach to creating a ZEB.   

 

 
Figure 37 – NZE Model Corroboration Plot 
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As shown in the graph, the NS of energy efficiency improvements are always 

higher than the NS of on-site energy production through a Photovoltaic (PV) System.  

This relationship results in the maximum overall NS occurring beyond that of the NS of 

energy efficiency improvements alone; this is because, until deep energy reductions, the 

incremental cost to reduce energy remains lower than that to produce that same amount 

of energy.  Also shown in the graph, the NS of the energy production component 

increases as the energy efficiency is improved.  This occurs because the reduction of 

energy use allows for a smaller PV system to be installed.   

The final corroboration is related to facility size.  As shown in Figure 38, as the 

size of a facility is reduced, the associated NS increases.   This is because, as the facility 

size is reduced, the associated energy demand decreases.  A decrease in demand results in 

a smaller PV system being required.  This corroborates well with the NBI study finding 

that most ZEBs are small administrative facilities.  The results of corroboration analysis 

show that both the construction premium and CE NZE model behave as would be 

expected from best-available understanding of their respective underlying concepts. 

 

 
Figure 38 – Facility Size Corroboration Plot 
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4.8. Uncertainty Analysis 

This section presents the results from the uncertainty analysis process.  First, the 

plot of cumulative net-savings (NS) is presented to illustrate convergence around the 

mean NS value.  Next, the histogram and cumulative distribution functions (CDF) of NS 

and Incremental Capital Investment (ICI) values are presented.  The histograms are 

utilized to prove the distributions are Gaussian, while the CDFs are utilized to discuss 

variance.  Finally, descriptive statistics for the NS and ICI distributions are presented. 

Figure 39 presents the cumulative NS value after each of the 10,000 iterations 

included in the Monte Carlo simulation.  This graph shows that NS converges around the 

mean value and is an indication that the Monte Carlo simulation was conducted properly. 

 

 
Figure 39 – Cumulative NS Plot 
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Figure 40 and 41 show the distributions of the NS and ICI values. 

 

 
Figure 40 – NS Histogram Plot 

 

 
Figure 41  - ICI Histogram Plot 
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Figure 42 and 43 show the CDFs of the NS and ICI values. 

 
Figure 42 – NS CDF 

 

 
Figure 43 – ICI CDF 
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Table 27 presents the normality test and statistics describing the NS distribution. 

Table 27 – NS Distribution Statistics 
Attribute Value 

Normality p-value 0.15 
Mean $ (35,279.40) 
Median $ (37,053.24) 
Standard Deviation $ 255,463.49 
Minimum $ (1,026,372.34) 
Maximum $ 1,515,180.41 

 

Table 28 presents the normality test and statistics describing the ICI distribution. 

Table 28 – ICI Distribution Statistics 
Attribute Value 

Normality p-value 0.15 
Mean $ 1,511,803.37 
Median $ 1,512,581.89 
Standard Deviation $ 235,468.29 
Minimum $ (110,545.85) 
Maximum $ 2,544,777.57 
0.975 Quantile $ 1,972,520 
0.025 Quantile $ 1,049,466 

 

The histograms in Figure 40 and Figure 41 and the normality p-values described 

in Table 27 and Table 28 prove that both distributions are Gaussian.  As illustrated by the 

CDF in Figure 42, only 46 percent of the distribution is cost-effective.  This means that 

the CE NZE model does not have the accuracy required to predict if the specific project 

outlined in Table 17 will be cost-effective.  Although the NS value is uncertain, the 

model does provide a more accurate ICI prediction. 
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As shown in Table 28, the model provides a Rough Order of Magnitude estimate 

for ICI.  By subtracting the 0.975 and 0.025 quantiles from the CDF in Figure 43, an 

interval is determined which encompasses 95 percent of the values in the distribution.  

This interval, [$1,972,520 $1,049,466], equates to a 31 percent Margin of Error.  This 

result is significant as it provides some justification for increasing the programmed cost 

and scope for projects which will attempt to achieve NZE. 

The model’s uncertainty regarding NS does not dictate that it cannot be utilized to 

produce significant results. When models contain considerable uncertainty, a comparison 

of output values holds more significance than the actual values themselves (Clevenger & 

Haymaker, 2006 ; Thornton et al., 2011).   

4.9. Geospatial Analysis 

As the geospatial analysis process merely produces results which were utilized by 

the PV Watts calculation and installation comparative analysis processes, results will not 

be discussed.  A summary of all geospatial variables for each installation is presented in 

Appendix B. 

4.10. PV Watts Calculation 

As the PV Watts calculation process merely produces results which were utilized 

by the installation comparative analysis process, results will not be discussed.  A 

summary of the ratio of alternating current power output to photovoltaic system size for 

each installation is presented in Appendix C. 
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4.11. Installation Comparative Analysis 

This section presents the results from the Installation Comparative Analysis 

process.  The analysis utilizes a ceteris paribus clause to study the effect of location on 

Net-Savings (NS).  More simply stated, the analysis holds all values which are not 

geospatial constant, and then calculates the NS value for each installation.  In effect, this 

section performs an analysis of alternatives to determine which installation will maximize 

the NS of a potential NZE facility.  The raster files which illustrate the distribution of net-

savings (NS) across the contiguous U.S. for each facility type are presented in Appendix 

C.   

The ranking of the top 20 installations in terms NS is provided in Table 29.  The 

complete list of NS by installation is provided in Appendix D.   
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Table 29 – Installation Cost-Effectiveness Ranking 

Installation 
Small Office Medium Office Small Hotel 
NS Rank NS Rank NS Rank 

Edwards AFB 12,512 1 191,579 1 288,279 1 
LA AFB 2,096 2 113,363 2 169,455 2 
March ARB -926 3 86,114 3 133,642 5 
Los Alamitos RC -1,699 4 66,180 6 119,180 8 
Hamilton AFB -2,533 5 83,184 4 153,194 3 
Mill Valley AFS -2,533 5 83,184 4 153,194 3 
Travis AFB -3,425 7 42,450 9 95,386 10 
Almaden AFB -4,402 8 65,833 7 129,461 6 
Vandenberg AFB -4,533 9 56,183 8 125,123 7 
McClellan AFB -6,660 10 18,511 11 59,184 13 
Point Arena AFS -7,132 11 40,493 10 94,798 11 
Beale AFB -10,649 12 -32,318 12 5,838 14 
Hanscom AFB -19,644 13 -72,624 13 95,964 9 
Westover AFB -22,366 14 -102,185 14 59,855 12 
Stewart AGS -25,052 15 -147,307 16 -11,401 16 
New Boston AS -25,709 16 -149,289 17 -7,356 15 
McGuire AFB -25,983 17 -129,321 15 -107,094 17 
Davis-Monthan AFB -31,810 18 -222,341 19 -362,378 26 
Avon Park AA -32,413 19 -191,907 18 -247,288 19 
Macdill AFB -35,247 20 -227,198 20 -284,128 21 

 

This section performs a Level 1 feasibility assessment, which includes both 

technical and economic components.  Because of this, the construction premium and 

associated percent reduction data were obtained from the technical support documents for 

the American Society of Heating, Refrigerating, and Air-Conditioning Engineers’ 

Advanced Energy Design Guides.  Utilizing these data points ensures that the technical 

feasibility component is met, while allowing the assessment of economic feasibility.   



 

137 

As summarized in Table 19, there are seven variables in the Cost-Effective (CE) 

Net-Zero Energy (NZE) model which are dependent on location.  The output of the 

model is dependent upon the specific combination of the seven geospatial variable values 

for each installation.    The raster files provided in Appendix C graphically illustrate the 

influence of location on the value of NS.   As can be seen, the most cost-effective 

locations for NZE facilities are in the South West, South East, and North East U.S.  This 

result matches what was learned from the sensitivity analysis provided in Section 4.5, as 

these locations generally have good solar resource and a relatively high cost of electricity. 

Another important conclusion can be made by conducting a comparative analysis 

between facility types.  As seen in the rasters mentioned above, the gradients between the 

three facility types remain relatively constant.  A more analytical approach to portraying 

this relationship is to convert the interval level data from the CE NZE model into ordinal 

level data, and then to compare that order between facility types.  Table 30 presents the 

results of the Spearman’s rank correlation analysis.  As there are 140 installations for 

each correlation analysis, the Central Limit Theorem states that the test statistic for each 

correlation is normally distributed.  As such, the Student’s t-distribution can be utilized to 

determine the observed significance level of the correlations.  As shown in the table, all 

p-values for the rank correlations are essentially equal to zero.  These values are well 

below our burden of proof, which for this research is 0.05; therefore, we can state that 

there is an extremely strong, direct, and significant rank correlation of installations 

between facility types.  This is an important finding as it allows the results from this 

installation comparative analysis to be applicable to other facility types, including those 

of DoD and USAF facilities. 
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Table 30 – Rank Correlation  
Attribute SO-MO Rank SO-SH Rank MO-SH Rank 
Difference Squared 11346 12788 12584 
rs 0.975189696 0.972036474 0.972482561 
Test Statistic 51.74974343 48.62601373 49.03551868 
P-value 1.471E-92 5.085E-89 1.702E-89 
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V. Conclusions and Recommendations 

This chapter presents the conclusions from this research.  The significance of the 

research is discussed along with specific actions regarding how to implement the 

research’s findings.  Finally, future research is identified to strengthen the model’s results 

and to address the lack of data for United States Air Force (USAF) facilities. 

5.1. Significance of Research 

This research has justified the incorporation of varying levels of feasibility 

assessments into the early stages of the current United States Air Force (USAF) Military 

Construction Procurement Process.  This allows for an adjustment to the cost and scope 

of a potential Net-Zero Energy project, prior to the stage where funds are appropriated 

from Congress.  The Level 1 feasibility assessment performed during this research 

narrows the required follow-on feasibility assessments to the installations which will 

maximize the chance of obtaining a cost-effective (CE) Zero Energy Building (ZEB).  

Although the research did not utilize USAF facility types to calculate net-saving (NS), it 

has proven that there is an extremely large and direct rank correlation between facility 

types.  This correlation allows for the installation ranking by NS to be applied to other 

facility types, including those of USAF facilities.  The findings of this research will save 

the USAF time and money by limiting the quantity of follow-on feasibility assessments.   

This research also provides a framework for future Level 1 feasibility assessments 

through the use of model building, geospatial analysis, and comparative analysis.  

Finally, it provides a strategy to comply with federal facility energy policy. 
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5.2. Recommendations for Action 

This project clearly highlights a need for the United States Air Force (USAF) to 

better understand both the benchmark energy use and cost premium to reduce the energy 

use of its facilities.  In regard to benchmark energy use, it is recommended that the USAF 

establish representative code compliant benchmarks for key facility types.  These 

benchmarks should follow the methodologies of previously completed work by the 

Department of Energy (DOE) and the U.S. Army Corps of Engineers (USACE).  The 

benchmark energy use should be categorized by Building America climate zones in order 

to capture the effects of climate on energy use.  These benchmarks should be utilized to 

set the energy efficiency targets for future construction projects. 

In regard to construction premiums associated with energy efficiency 

improvements, it is recommended that the USAF establish advanced energy design 

guides for key facility types.  Again, the design guides should follow the methodologies 

of previously completed work by the DOE and USACE.  These guides should be 

prescriptive and set standards for conducting and reporting energy simulations, including 

realistic internal load assumptions.  Supporting documentation should be created which 

documents the construction premium associated with meeting the energy reductions 

prescribed by the design guides.   

This research indicates that the USAF does not always strictly follow the guiding 

principles for high performance and sustainable facilities, which are required by the 

Energy Policy ACT of 2005.  These guiding principles are foundational to the 

construction of low-energy facilities, the most important of which are the use of an 
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integrated systems engineering approach and the incorporation of facility commissioning 

into contract requirements.  Another principle the USAF should investigate is the use of 

performance-based contracting.  This type of contracting method encourages innovative 

solutions and incentivizes contractors to exceed project goals related to cost, schedule, 

and energy performance.  As illustrated by the case-study of the Department of Energy’s 

Research Support Facility, a great project team combined with performance-based 

contracting can produce a facility with drastic energy use reduction and a minimal 

incremental cost (Department of Energy, 2011). 

This research project advocates for an adjustment to current USAF strategy 

related to meeting federal energy policy through the Military Construction Program.  It is 

recommended that all future facilities be designed and constructed to drastically reduce 

energy use, with a goal of at least 50 percent reduction.  As was shown by this research, 

specifically in Figure 37, these reductions are always cost-effective when assessed 

utilizing this project's economic assumptions.  If the facility being constructed cannot 

achieve cost-effective NZE, as demonstrated by feasibility assessments, it should be 

constructed Photovoltaic (PV) Ready.  This will minimize the capital investment 

necessary to install the PV system when it is determined cost-effective to do so.  This 

approach is further validated in the wording of Executive Order 13514, which states that 

new construction must be designed after 2020 to achieve NZE by 2030. 

5.3. Recommendations for Future Research 

There are several assumptions and limitations of this research which could be 

addressed by follow-on efforts.  First, expert opinion could be utilized to develop 
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quantifiable soft-benefits for obtaining a Zero-Energy Building (ZEB) and net-zero 

installations.  Soft-benefits are those not directly associated with utility bill reductions, 

such as energy security and independence.  Second, investigate the other strategies to 

meet EO 13514, namely off-base green power purchase agreements and on-base 

renewable energy farms.  Any assessment of the cost-effectiveness of these strategies 

should address the soft-benefit reduction from a reduction in energy security and 

independence.  Third, energy efficiency and renewable energy technology rebates and 

incentives should be incorporated into the cost-effective (CE) net-zero energy (NZE) 

model.  These will result in an increase in net-savings (NS) and may produce a change in 

installation ranking. 

This research has limited the number of necessary follow-on feasibility 

assessments to the most likely installations to achieve a CE ZEB.  More detailed 

assessments are required at these installations to more accurately estimate the life-cycle 

savings of the potential ZEB.  These assessments should be closely monitored and 

controlled to ensure they follow proven methodologies and utilize facility benchmarks.  

As indicated by the NZE feasibility assessment of a Dormitory at Keesler AFB, wildly 

conflicting results are produced when these assessments are not managed to accurate 

benchmarks (TranSystems Corporation, 2011). 

The final recommendations for follow-on research address two of the 

recommendations for action described in Section 5.7.  There is a critical need to develop 

benchmark buildings for key United States Air Force (USAF) facility types in order to 

determine a legitimate baseline energy use.  This baseline should be the foundation for 

measuring improvements in building energy efficiency and also serve as the foundation 
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for the creation of Advanced Energy Design Guides.  These guides should provide a 

prescriptive path to obtaining deep energy savings from the established baseline for key 

facility types.  Both of the above efforts should follow established methodologies 

developed by the Department of Energy and Army Corps of Engineers. 
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Appendix A 

This appendix presents graphical representations of the three phases of this research’s approach. 

 
Figure 44 – Model Development Phase 
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Figure 45 – Model Evaluation Phase 

• Code Model 

• Perform OAT 
Analysis 
·Generate 
Sensit ivity Plot 

· Rank var iables 

• Code Eqn 
· Solve remaining 
constraint 
• List curves 

Model Evaluation 

· Estimate EISA va lues 
• Pea rson Correlat ion 

Con Prem Correlation 

Corroboration 
Analysis 

Construction 
Premium 

Corroboration 

• Code Curves 

· Vary Percent Red 
• Generate Graph 

• Code Models 
· Vary Percent Red 
• Va ry Facility Size 
• Generate Graphs 

Uncertainty 
Analysis 

· Code Model 
• Perform Monte 
Carlo Simulation 
· Generate 
Cumulative Plot 
• Generate 
Histogram/CDF 
• Describe w ith 
Statistics 

NS Uncertainty 



 

 

14
6 

 
Figure 46 – Model Application Phase 
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Appendix B 

This appendix presents the values obtained for each installation during the geospatial analysis process. 

Table 31 – Geospatial Values by Installation 

Installation County State Zone Region 
Zip 

Code 

Area 
Cost 

Factor 
Unique 

ID 
Air Force Dare County 
Bombing Range 

Dare North Carolina 3_moist 3 27953 
0.84 

72 

Almaden AFB Santa Clara California 3_marine 4 95120 1.21 40 
Altus AFB Jackson Oklahoma 3_moist 3 73521 0.96 34 
Andrews AFB Prince George's Maryland 4_moist 3 20762 1.03 118 
Arnold AFB Coffee Tennessee 4_moist 3 37355 0.92 61 
Avon Park Auxiliary Airfield Polk Florida 2_moist 3 33898 0.84 48 
Barksdale AFB Bossier Louisiana 3_moist 3 71110 0.81 56 
Beale AFB Yuba California 3_dry 4 95903 1.28 85 
Benton Air Force Sta Sullivan Pennsylvania 5_moist 1 17814 1.07 126 
Boise Air Terminal Air Guard 
Sta 

Ada Idaho 5_dry 4 83705 
0.93 

93 

Brooks AFB Bexar Texas 2_moist 3 78235 0.81 4 
Buckley AFB Arapahoe Colorado 5_dry 4 80011 1.02 87 
Cannon AFB Curry New Mexico 4_dry 4 88103 1.03 32 
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Cavalier Air Force Sta Pembina North Dakota 7 2 58220 1.06 104 
Chanute AFB Champaign Illinois 5_moist 2 61866 1.21 112 
Charleston AFB Charleston South Carolina 3_moist 3 29404 0.9 65 
Chocolate Mountains Gunnery 
Range 

Imperial California 2_dry 4 92257 
1.21 

21 

Claiborne Range Rapides Louisiana 2_moist 3 71424 0.86 52 
Columbus AFB Lowndes Mississippi 3_moist 3 39705 0.87 58 
Cp Dawson Air Force Reserve 
Center 

Preston West Virginia 5_moist 3 26764 
0.99 

120 

Cp Perry Air National Guard 
Sta 

Ottawa Ohio 5_moist 2 43452 
0.89 

128 

Creech AFB Clark Nevada 3_dry 4 89018 1.26 39 
Davis- Monthan AFB Pima Arizona 2_dry 4 85730 1.02 11 
Dixie Target Range McMullen Texas 2_moist 3 78072 0.81 2 
Dobbins Air Reserve Base Cobb Georgia 3_moist 3 30060 0.84 59 
Dover AFB Kent Delaware 4_moist 3 19901 1.09 119 
Dyess AFB Taylor Texas 3_dry 3 79607 0.91 12 
Dyess Air Force Base 
(Hermleigh Emitter Site) 

Fisher Texas 3_dry 3 79526 
0.91 

13 

Dyess Air Force Base (Lake 
Thomas Emitter Site) 

Borden Texas 3_dry 3 79527 
0.91 

14 

Dyess Air Force Base (Nine 
Point Mesa Emitter Site) 

Brewster Texas 3_dry 3 79830 
0.91 

8 
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Dyess Air Force Base (Snyder 
Winston Field Electronic 
Scoring Site) 

Scurry Texas 3_dry 3 79549 

0.91 

15 

Dyess Air Force Base (Union 
Emitter Site) 

Scurry Texas 3_dry 3 79549 
0.91 

16 

Edwards AFB Kern California 3_dry 4 93523 1.29 36 
Ellington Fld Harris Texas 2_moist 3 77034 0.81 41 
Ellsworth AFB Meade South Dakota 6_moist 2 57706 1 94 
Ellsworth Air Force Base 
(Antelope Butte Mini Mute 
Radar Bomb Scoring Site) 

Butte South Dakota 6_moist 2 57717 

1 

97 

Ellsworth Air Force Base (Belle 
Fourche Radar Bomb Scoring 
Site) 

Butte South Dakota 6_moist 2 57717 

1 

96 

Ellsworth Air Force Base 
(Conner Radar Bomb Scoring 
Site) 

Butte South Dakota 6_moist 2 57717 

1 

98 

Ellsworth Air Force Base 
(Horman Radar Bomb Scoring 
Site) 

Butte South Dakota 6_moist 2 57717 

1 

95 

Escondido McMullen Range McMullen Texas 2_moist 3 78072 0.81 1 
F E Warren AFB Laramie Wyoming 6_dry 4 82001 1.09 90 
Fairchild AFB Spokane Washington 5_dry 4 99011 1.01 102 
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Finland Air Force Sta Lake Minnesota 7 2 55603 1.1 138 
General Mitchell Air Reserve 
Sta 

Milwaukee Wisconsin 6_moist 2 53207 
1.05 

117 

Goodfellow AFB Tom Green Texas 3_dry 3 76908 0.84 9 
Grand Forks AFB Grand Forks North Dakota 7 2 58204 0.96 139 
Grissom AFB Miami Indiana 5_moist 2 46970 1 113 
Gulfport-Biloxi Regional 
Airport Air National Guard 

Harrison Mississippi 2_moist 3 39507 
0.89 

45 

Hamilton AFB Marin California 3_marine 4 94949 1.21 77 
Hanscom AFB Middlesex Massachusetts 5_moist 1 01731 1.18 131 
Havre Air Force Sta Hill Montana 6_dry 4 59501 1.11 106 
Hill AFB Davis Utah 5_dry 4 84056 1.06 89 
Hill Air Force Base (Little 
Mountain Test Facility) 

Weber Utah 5_dry 4 84404 
1.06 

91 

Homestead Air Reserve Base Miami-Dade Florida 1_moist 3 33033 0.88 47 
Hurlburt Fld Okaloosa Florida 2_moist 3 32544 0.84 46 
Inkey Barley Range Imperial California 2_dry 4 92250 1.21 18 
Jackson Barracks Air National 
Guard Sta 

Orleans Louisiana 2_moist 3 70117 
0.86 

42 

Keesler AFB Harrison Mississippi 2_moist 3 39534 0.89 44 
Kitty Baggage Range Imperial California 2_dry 4 92250 1.21 20 
Lackland AFB Bexar Texas 2_moist 3 78227 0.85 6 
Langley AFB Hampton Virginia 4_moist 3 23665 0.94 74 
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Langley Air Force Base (Bethel 
Manor Housing Area) 

York Virginia 4_moist 3 23665 
0.94 

75 

Laughlin AFB Val Verde Texas 2_dry 3 78843 0.89 5 
Little Rock AFB Pulaski Arkansas 3_moist 3 72076 0.86 60 
Loom Lobby Range Imperial California 2_dry 4 92004 1.21 17 
Los Alamitos Reserve Center 
and Air Sta 

Orange California 3_dry 4 90720 
1.21 

25 

Los Angeles Air Force Base 
(Area A) 

Los Angeles California 3_dry 4 90250 
1.15 

28 

Los Angeles Air Force Base 
(Area B) 

Los Angeles California 3_dry 4 90245 
1.15 

29 

Los Angeles Air Force Base 
(Area C) 

Los Angeles California 3_dry 4 90260 
1.15 

27 

Los Angeles Air Force Base 
(Fort Macarthur Housing Area) 

Los Angeles California 3_dry 4 90731 
1.15 

23 

Los Angeles Air Force Base 
(Pacific Crest Housing Area) 

Los Angeles California 3_dry 4 90732 
1.15 

24 

Los Angeles Air Force Base 
(Sun Valley) 

Los Angeles California 3_dry 4 91352 
1.15 

30 

Luke AFB Maricopa Arizona 2_dry 4 85309 1.02 22 
Macdill AFB Hillsborough Florida 2_moist 3 33621 0.93 49 
Malmstrom AFB Cascade Montana 6_dry 4 59405 1.13 101 
March Air Reserve Base Riverside California 3_dry 4 92518 1.14 26 
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Marietta Air Force Sta Lancaster Pennsylvania 5_moist 1 17547 1.07 123 
Maxwell AFB Montgomery Alabama 3_moist 3 36113 0.82 54 
Maxwell Air Force Base 
(Family Housing Annex) 

Montgomery Alabama 3_moist 3 36108 
0.82 

53 

Maxwell Air Force Base 
(Gunter Annex) 

Montgomery Alabama 3_moist 3 36115 
0.82 

55 

McChord AFB Pierce Washington 4_marine 4 98438 1.13 100 
McClellan AFB Sacramento California 3_dry 4 95652 1.21 79 
McConnell AFB Sedgwick Kansas 4_moist 2 67210 0.96 107 
McEntire Air Guard Sta Richland South Carolina 3_moist 3 29044 0.86 67 
McGuire AFB Burlington New Jersey 4_moist 1 08641 1.22 122 
Melrose Range Roosevelt New Mexico 4_dry 4 88118 0.95 31 
Mill Valley Air Force Sta Marin California 3_marine 4 94930 1.21 76 
Minneapolis-St Paul 
International Airport Air 
Reserve Sta 

Hennepin Minnesota 6_moist 2 55450 

1.12 

137 

Minot AFB Ward North Dakota 7 2 58704 1.16 103 
Moody AFB Lanier Georgia 2_moist 3 31641 0.81 51 
Mountain Home AFB Elmore Idaho 5_dry 4 83648 1 92 
Navy Dare County Range Dare North Carolina 3_moist 3 27953 0.84 73 
Nellis AFB Clark Nevada 3_dry 4 89115 1.22 37 
New Boston Air Sta Hillsborough New Hampshire 5_moist 1 03070 1.09 133 
Niagara Falls International Niagara New York 5_moist 1 14304 1.1 134 
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Airport Air Reserve Sta 
Offutt AFB Sarpy Nebraska 5_moist 2 68113 0.98 114 
Offutt Air Force Base (Capehart 
Housing Area) 

Sarpy Nebraska 5_moist 2 68123 
0.98 

116 

Offutt Air Force Base (Housing 
Area and Golf Course) 

Sarpy Nebraska 5_moist 2 68123 
0.98 

115 

Opheim Air Force Sta Valley Montana 6_dry 4 59250 1.11 105 
Patrick AFB Brevard Florida 2_moist 3 32925 0.84 50 
Peterson AFB El Paso Colorado 5_dry 4 80914 1.07 82 
Pittsburgh Airport Air Reserve 
Sta 

Allegheny Pennsylvania 5_moist 1 15108 
1 

124 

Point Arena Air Force Sta Mendocino California 3_marine 4 95468 1.21 83 
Point of Marsh Target Airfield Carteret North Carolina 3_moist 3 28516 0.84 69 
Pope AFB Cumberland North Carolina 3_moist 3 28308 0.9 70 
Portland Air Guard Sta Multnomah Oregon 4_marine 4 97218 1.04 99 
Quonset Air Guard Base Washington Rhode Island 5_moist 1 02852 1.08 129 
Randolph AFB Bexar Texas 2_moist 3 78148 0.85 7 
Reno Tahoe International 
Airport 

Washoe Nevada 5_dry 4 89502 
1.21 

86 

Rickenbacker International 
Airport 

Franklin Ohio 5_moist 2 43217 
0.89 

121 

Robins AFB Houston Georgia 3_moist 3 31098 0.87 64 
Schriever AFB El Paso Colorado 5_dry 4 80930 1.07 81 
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Scott AFB St. Clair Illinois 4_moist 2 62225 1.11 108 
Searay Target Range Complex Noxubee Mississippi 3_moist 3 39341 0.88 57 
Selfridge Air National Guard 
Base 

Macomb Michigan 5_moist 2 48045 
1.12 

132 

Seymour Johnson AFB Wayne North Carolina 3_moist 3 27531 0.8 71 
Shade Tree Range Imperial California 2_dry 4 92251 1.21 19 
Shaw AFB Sumter South Carolina 3_moist 3 29152 0.87 68 
Shaw AFB (Poinsett Range) Sumter South Carolina 3_moist 3 29125 0.87 66 
Smoky Hill Range Saline Kansas 4_moist 2 67425 0.93 80 
Springfield-Beckley Air Guard 
Sta 

Clark Ohio 5_moist 2 45502 
0.89 

111 

Stewart Air Guard Sta Orange New York 5_moist 1 12550 1.05 127 
Tinker AFB Oklahoma Oklahoma 3_moist 3 73145 0.91 62 
Townsend Air-To-Ground 
Range 

McIntosh Georgia 2_moist 3 31331 
0.84 

63 

Training Site Ethan Allen 
Range 

Chittenden Vermont 6_moist 1 05465 
0.91 

140 

Travis AFB Solano California 3_dry 4 94585 1.25 78 
Tucson International Airport 
Air Guard Sta 

Pima Arizona 2_dry 4 85706 
0.98 

10 

Tyndall AFB Bay Florida 2_moist 3 32403 0.81 43 
U.S. Air Force Academy El Paso Colorado 5_dry 4 80840 1.07 84 
U.S. Air Force Plant 42 Los Angeles California 3_dry 4 93550 1.21 33 
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Utah Air National Guard Salt Lake Utah 5_dry 4 84116 1 88 
Vance AFB Garfield Oklahoma 3_moist 3 73703 0.94 38 
Vandenberg AFB Santa Barbara California 3_marine 4 93437 1.26 35 
Volk Field Air National Guard 
Base 

Juneau Wisconsin 6_moist 2 54618 
1.05 

135 

Volk Field Air National Guard 
Base (Hardwood Range) 

Juneau Wisconsin 6_moist 2 54646 
1.05 

136 

Westover AFB Hampden Massachusetts 5_moist 1 01022 1.16 130 
Whiteman AFB Johnson Missouri 4_moist 2 65305 1.1 109 
Wright-Patterson AFB Greene Ohio 5_moist 2 45433 0.87 110 
Yankee Target Range McMullen Texas 2_moist 3 78072 0.81 3 
Youngstown-Warren Air 
Reserve Sta 

Trumbull Ohio 5_moist 2 44473 
0.9 

125 
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Appendix C 

This appendix presents the output to photovoltaic system size ratios calculated for 

each installation. 

Table 32 – Output to Size Ratios by Installation 

Installation Zip Code 

Default  
OSR 

(kWr/kW) 
Air Force Dare County Bombing Range 27953 1335 
Almaden AFB 95120 1442 
Altus AFB 73521 1457 
Andrews AFB 20762 1206 
Arnold AFB 37355 1273 
Avon Park Auxiliary Airfield 33898 1362 
Barksdale AFB 71110 1283 
Beale AFB 95903 1374 
Benton Air Force Sta 17814 1186 
Boise Air Terminal Air Guard Sta 83705 1365 
Brooks AFB 78235 1380 
Buckley AFB 80011 1459 
Cannon AFB 88103 1580 
Cavalier Air Force Sta 58220 1215 
Chanute AFB 61866 1245 
Charleston AFB 29404 1336 
Chocolate Mountains Gunnery Range 92257 1565 
Claiborne Range 71424 1294 
Columbus AFB 39705 1265 
Cp Dawson Air Force Reserve Center 26764 1099 
Cp Perry Air National Guard Sta 43452 1152 
Creech AFB 89018 1602 
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Davis- Monthan AFB 85730 1663 
Dixie Target Range 78072 1253 
Dobbins Air Reserve Base 30060 1345 
Dover AFB 19901 1226 
Dyess AFB 79607 1493 
Dyess Air Force Base (Hermleigh Emitter Site) 79526 1563 
Dyess Air Force Base (Lake Thomas Emitter Site) 79527 1564 
Dyess Air Force Base (Nine Point Mesa Emitter Site) 79830 1634 
Dyess Air Force Base (Snyder Winston Field Electronic 
Scoring Site) 

79549 
1563 

Dyess Air Force Base (Union Emitter Site) 79549 1563 
Edwards AFB 93523 1732 
Ellington Fld 77034 1220 
Ellsworth AFB 57706 1408 
Ellsworth Air Force Base (Antelope Butte Mini Mute 
Radar Bomb Scoring Site) 

57717 
1408 

Ellsworth Air Force Base (Belle Fourche Radar Bomb 
Scoring Site) 

57717 
1408 

Ellsworth Air Force Base (Conner Radar Bomb Scoring 
Site) 

57717 
1408 

Ellsworth Air Force Base (Horman Radar Bomb Scoring 
Site) 

57717 
1408 

Escondido McMullen Range 78072 1396 
F E Warren AFB 82001 1459 
Fairchild AFB 99011 1181 
Finland Air Force Sta 55603 1222 
General Mitchell Air Reserve Sta 53207 1227 
Goodfellow AFB 76908 1463 
Grand Forks AFB 58204 1245 
Grissom AFB 46970 1166 
Gulfport-Biloxi Regional Airport Air National Guard 39507 1214 
Hamilton AFB 94949 1473 
Hanscom AFB 01731 1148 
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Havre Air Force Sta 59501 1275 
Hill AFB 84056 1399 
Hill Air Force Base (Little Mountain Test Facility) 84404 1399 
Homestead Air Reserve Base 33033 1339 
Hurlburt Fld 32544 1265 
Inkey Barley Range 92250 1549 
Jackson Barracks Air National Guard Sta 70117 1277 
Keesler AFB 39534 1240 
Kitty Baggage Range 92250 1549 
Lackland AFB 78227 1378 
Langley AFB 23665 1244 
Langley Air Force Base (Bethel Manor Housing Area) 23665 1244 
Laughlin AFB 78843 1482 
Little Rock AFB 72076 1297 
Loom Lobby Range 92004 1498 
Los Alamitos Reserve Center and Air Sta 90720 1467 
Los Angeles Air Force Base (Area A) 90250 1467 
Los Angeles Air Force Base (Area B) 90245 1467 
Los Angeles Air Force Base (Area C) 90260 1467 
Los Angeles Air Force Base (Fort Macarthur Housing 
Area) 

90731 
1467 

Los Angeles Air Force Base (Pacific Crest Housing Area) 90732 1467 
Los Angeles Air Force Base (Sun Valley) 91352 1497 
Luke AFB 85309 1546 
Macdill AFB 33621 1364 
Malmstrom AFB 59405 1309 
March Air Reserve Base 92518 1449 
Marietta Air Force Sta 17547 1168 
Maxwell AFB 36113 1301 
Maxwell Air Force Base (Family Housing Annex) 36108 1301 
Maxwell Air Force Base (Gunter Annex) 36115 1301 
McChord AFB 98438 943 
McClellan AFB 95652 1399 
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McConnell AFB 67210 1385 
McEntire Air Guard Sta 29044 1310 
McGuire AFB 08641 1179 
Melrose Range 88118 1526 
Mill Valley Air Force Sta 94930 1473 
Minneapolis-St Paul International Airport Air Reserve Sta 55450 1224 
Minot AFB 58704 1321 
Moody AFB 31641 1285 
Mountain Home AFB 83648 1365 
Navy Dare County Range 27953 1324 
Nellis AFB 89115 1664 
New Boston Air Sta 03070 1157 
Niagara Falls International Airport Air Reserve Sta 14304 1075 
Offutt AFB 68113 1315 
Offutt Air Force Base (Capehart Housing Area) 68123 1315 
Offutt Air Force Base (Housing Area and Golf Course) 68123 1315 
Opheim Air Force Sta 59250 1297 
Patrick AFB 32925 1303 
Peterson AFB 80914 1458 
Pittsburgh Airport Air Reserve Sta 15108 1118 
Point Arena Air Force Sta 95468 1399 
Point of Marsh Target Airfield 28516 1272 
Pope AFB 28308 1312 
Portland Air Guard Sta 97218 1028 
Quonset Air Guard Base 02852 1159 
Randolph AFB 78148 1337 
Reno Tahoe International Airport 89502 1534 
Rickenbacker International Airport 43217 1124 
Robins AFB 31098 1297 
Schriever AFB 80930 1458 
Scott AFB 62225 1248 
Searay Target Range Complex 39341 1273 
Selfridge Air National Guard Base 48045 1159 
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Seymour Johnson AFB 27531 1304 
Shade Tree Range 92251 1534 
Shaw AFB 29152 1278 
Shaw AFB (Poinsett Range) 29125 1278 
Smoky Hill Range 67425 1439 
Springfield-Beckley Air Guard Sta 45502 1154 
Stewart Air Guard Sta 12550 1201 
Tinker AFB 73145 1392 
Townsend Air-To-Ground Range 31331 1297 
Training Site Ethan Allen Range 05465 1167 
Travis AFB 94585 1459 
Tucson International Airport Air Guard Sta 85706 1562 
Tyndall AFB 32403 1274 
U.S. Air Force Academy 80840 1494 
U.S. Air Force Plant 42 93550 1777 
Utah Air National Guard 84116 1382 
Vance AFB 73703 1386 
Vandenberg AFB 93437 1465 
Volk Field Air National Guard Base 54618 1180 
Volk Field Air National Guard Base (Hardwood Range) 54646 1180 
Westover AFB 01022 1118 
Whiteman AFB 65305 1315 
Wright-Patterson AFB 45433 1137 
Yankee Target Range 78072 1396 
Youngstown-Warren Air Reserve Sta 44473 1041 
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Appendix D 

This appendix presents the raster files which depict net-savings across the contiguous U.S. for each facility type. 

 
Figure 47 – Small Office NS Raster 
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Figure 48 – Medium Office NS Raster 
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Figure 49 – Small Hotel NS Raster 
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Appendix E 

This appendix presents the net-savings for each installation and for each facility type. 

Table 33 – Installation Relative NS 

Installation County State 
Small  
Office 

Medium  
Office 

Small  
Hotel 

Air Force Dare County Bombing Range Dare North Carolina -61,302 -555,934 -581,463 

Almaden AFB Santa Clara California -4,402 65,833 129,461 

Altus AFB Jackson Oklahoma -60,030 -560,184 -575,023 

Andrews AFB Prince George's Maryland -39,412 -295,502 -321,684 

Arnold AFB Coffee Tennessee -41,779 -333,403 -373,691 

Avon Park Auxiliary Airfield Polk Florida -32,413 -191,907 -247,288 

Barksdale AFB Bossier Louisiana -65,560 -599,446 -636,148 

Beale AFB Yuba California -10,649 -32,318 5,838 

Benton Air Force Sta Sullivan Pennsylvania -64,916 -632,668 -608,455 

Boise Air Terminal Air Guard Sta Ada Idaho -69,992 -732,107 -821,080 

Brooks AFB Bexar Texas -49,442 -407,151 -491,451 

Buckley AFB Arapahoe Colorado -40,004 -384,874 -382,255 

Cannon AFB Curry New Mexico -41,727 -413,511 -505,695 

Cavalier Air Force Sta Pembina North Dakota -87,212 -730,031 -826,634 
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Chanute AFB Champaign Illinois -78,856 -807,922 -816,435 

Charleston AFB Charleston South Carolina -58,438 -521,561 -534,784 

Chocolate Mountains Gunnery Range Imperial California 10,791 294,807 202,680 

Claiborne Range Rapides Louisiana -61,230 -540,285 -644,443 

Columbus AFB Lowndes Mississippi -61,430 -546,015 -566,777 

Cp Dawson Air Force Reserve Center Preston West Virginia -85,773 -877,264 -911,649 

Cp Perry Air National Guard Sta Ottawa Ohio -72,759 -726,937 -738,526 

Creech AFB Clark Nevada -43,249 -449,203 -468,830 

Davis- Monthan AFB Pima Arizona -31,810 -222,341 -362,378 

Dixie Target Range McMullen Texas -59,998 -517,905 -622,798 

Dobbins Air Reserve Base Cobb Georgia -47,582 -388,741 -383,235 

Dover AFB Kent Delaware -44,482 -365,049 -402,176 

Dyess AFB Taylor Texas -47,469 -444,001 -507,070 

Dyess Air Force Base (Hermleigh Emitter Site) Fisher Texas -42,262 -390,619 -438,991 

Dyess Air Force Base (Lake Thomas Emitter Site) Borden Texas -42,716 -397,968 -449,133 

Dyess Air Force Base (Nine Point Mesa Emitter 
Site) 

Brewster Texas 
-38,716 -359,711 -400,984 

Dyess Air Force Base (Snyder Winston Field 
Electronic Scoring Site) 

Scurry Texas 
-42,878 -399,708 -451,323 

Dyess Air Force Base (Union Emitter Site) Scurry Texas -42,878 -399,708 -451,323 

Edwards AFB Kern California 12,512 191,579 288,279 

Ellington Fld Harris Texas -63,925 -561,940 -674,312 
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Ellsworth AFB Meade South Dakota -60,727 -610,386 -591,978 

Ellsworth Air Force Base (Antelope Butte Mini 
Mute Radar Bomb Scoring Site) 

Butte South Dakota 
-60,727 -610,386 -591,978 

Ellsworth Air Force Base (Belle Fourche Radar 
Bomb Scoring Site) 

Butte South Dakota 
-60,727 -610,386 -591,978 

Ellsworth Air Force Base (Conner Radar Bomb 
Scoring Site) 

Butte South Dakota 
-60,727 -610,386 -591,978 

Ellsworth Air Force Base (Horman Radar Bomb 
Scoring Site) 

Butte South Dakota 
-60,727 -610,386 -591,978 

Escondido McMullen Range McMullen Texas -48,248 -394,626 -476,599 

F E Warren AFB Laramie Wyoming -68,537 -681,841 -719,593 

Fairchild AFB Spokane Washington -93,713 -997,306 -1,142,653 

Finland Air Force Sta Lake Minnesota -80,612 -634,140 -706,085 

General Mitchell Air Reserve Sta Milwaukee Wisconsin -57,515 -551,802 -500,645 

Goodfellow AFB Tom Green Texas -47,385 -430,508 -500,715 

Grand Forks AFB Grand Forks North Dakota -80,670 -656,868 -740,142 

Grissom AFB Miami Indiana -80,138 -817,341 -841,513 

Gulfport-Biloxi Regional Airport Air National 
Guard 

Harrison Mississippi 
-61,554 -529,702 -635,482 

Hamilton AFB Marin California -2,533 83,184 153,194 

Hanscom AFB Middlesex Massachusetts -19,644 -72,624 95,964 

Havre Air Force Sta Hill Montana -76,520 -754,289 -799,598 
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Hill AFB Davis Utah -68,397 -718,498 -795,846 

Hill Air Force Base (Little Mountain Test Facility) Weber Utah -68,397 -718,498 -795,846 

Homestead Air Reserve Base Miami-Dade Florida -49,356 -250,218 -372,044 

Hurlburt Fld Okaloosa Florida -40,505 -276,804 -347,970 

Inkey Barley Range Imperial California 9,830 285,155 190,521 

Jackson Barracks Air National Guard Sta Orleans Louisiana -62,709 -555,799 -662,841 

Keesler AFB Harrison Mississippi -59,072 -503,657 -604,595 

Kitty Baggage Range Imperial California 9,924 286,278 191,936 

Lackland AFB Bexar Texas -50,656 -421,801 -504,165 

Langley AFB Hampton Virginia -63,524 -600,532 -700,141 

Langley Air Force Base (Bethel Manor Housing 
Area) 

York Virginia 
-63,260 -597,203 -693,686 

Laughlin AFB Val Verde Texas -43,663 -342,396 -514,262 

Little Rock AFB Pulaski Arkansas -69,162 -647,267 -688,298 

Loom Lobby Range Imperial California 6,628 253,016 150,033 

Los Alamitos Reserve Center and Air Sta Orange California -1,699 66,180 119,180 

Los Angeles Air Force Base (Area A) Los Angeles California 50 93,709 144,719 

Los Angeles Air Force Base (Area B) Los Angeles California 50 93,709 144,719 

Los Angeles Air Force Base (Area C) Los Angeles California 50 93,709 144,719 

Los Angeles Air Force Base (Fort Macarthur 
Housing Area) 

Los Angeles California 
50 93,709 144,719 

Los Angeles Air Force Base (Pacific Crest Los Angeles California 50 93,709 144,719 
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Housing Area) 
Los Angeles Air Force Base (Sun Valley) Los Angeles California 2,096 113,363 169,455 

Luke AFB Maricopa Arizona -38,439 -288,886 -446,210 

Macdill AFB Hillsborough Florida -35,247 -227,198 -284,128 

Malmstrom AFB Cascade Montana -74,011 -729,969 -769,897 

March Air Reserve Base Riverside California -926 86,114 133,642 

Marietta Air Force Sta Lancaster Pennsylvania -66,828 -653,817 -633,373 

Maxwell AFB Montgomery Alabama -49,682 -406,033 -404,888 

Maxwell Air Force Base (Family Housing Annex) Montgomery Alabama -49,682 -406,033 -404,888 

Maxwell Air Force Base (Gunter Annex) Montgomery Alabama -49,682 -406,033 -404,888 

McChord AFB Pierce Washington -121,726 -1,260,527 -1,568,738 

McClellan AFB Sacramento California -6,660 18,511 59,184 

McConnell AFB Sedgwick Kansas -50,761 -464,921 -527,997 

McEntire Air Guard Sta Richland South Carolina -59,257 -526,783 -544,835 

McGuire AFB Burlington New Jersey -25,983 -129,321 -107,094 

Melrose Range Roosevelt New Mexico -42,705 -413,011 -511,474 

Mill Valley Air Force Sta Marin California -2,533 83,184 153,194 

Minneapolis-St Paul International Airport Air 
Reserve Sta 

Hennepin Minnesota 
-73,119 -742,151 -732,432 

Minot AFB Ward North Dakota -80,190 -651,952 -729,506 

Moody AFB Lanier Georgia -45,943 -348,251 -428,972 

Mountain Home AFB Elmore Idaho -72,253 -760,332 -851,585 
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Navy Dare County Range Dare North Carolina -62,216 -565,461 -592,806 

Nellis AFB Clark Nevada -38,601 -397,388 -409,689 

New Boston Air Sta Hillsborough New Hampshire -25,709 -149,289 -7,356 

Niagara Falls International Airport Air Reserve 
Sta 

Niagara New York 
-41,211 -327,346 -220,341 

Offutt AFB Sarpy Nebraska -61,016 -600,540 -584,458 

Offutt Air Force Base (Capehart Housing Area) Sarpy Nebraska -61,016 -600,540 -584,458 

Offutt Air Force Base (Housing Area and Golf 
Course) 

Sarpy Nebraska 
-61,016 -600,540 -584,458 

Opheim Air Force Sta Valley Montana -74,460 -733,141 -774,444 

Patrick AFB Brevard Florida -37,192 -242,040 -306,742 

Peterson AFB El Paso Colorado -41,685 -405,736 -404,904 

Pittsburgh Airport Air Reserve Sta Allegheny Pennsylvania -69,952 -686,451 -676,295 

Point Arena Air Force Sta Mendocino California -7,132 40,493 94,798 

Point of Marsh Target Airfield Carteret North Carolina -66,752 -612,725 -649,085 

Pope AFB Cumberland North Carolina -65,277 -602,313 -630,937 

Portland Air Guard Sta Multnomah Oregon -96,776 -975,375 -1,212,211 

Quonset Air Guard Base Washington Rhode Island -41,982 -348,689 -254,795 

Randolph AFB Bexar Texas -54,119 -458,700 -550,358 

Reno Tahoe International Airport Washoe Nevada -39,101 -383,162 -368,450 

Rickenbacker International Airport Franklin Ohio -75,942 -762,131 -779,994 

Robins AFB Houston Georgia -52,300 -438,556 -438,823 
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Schriever AFB El Paso Colorado -41,685 -405,736 -404,904 

Scott AFB St. Clair Illinois -71,623 -708,509 -816,803 

Searay Target Range Complex Noxubee Mississippi -61,042 -542,790 -561,978 

Selfridge Air National Guard Base Macomb Michigan -69,070 -679,316 -659,870 

Seymour Johnson AFB Wayne North Carolina -62,554 -565,675 -596,895 

Shade Tree Range Imperial California 8,910 275,924 178,892 

Shaw AFB Sumter South Carolina -62,406 -560,422 -583,931 

Shaw AFB (Poinsett Range) Sumter South Carolina -62,406 -560,422 -583,931 

Smoky Hill Range Saline Kansas -45,993 -411,939 -464,565 

Springfield-Beckley Air Guard Sta Clark Ohio -72,537 -724,489 -735,641 

Stewart Air Guard Sta Orange New York -25,052 -147,307 -11,401 

Tinker AFB Oklahoma Oklahoma -63,034 -587,346 -612,157 

Townsend Air-To-Ground Range McIntosh Georgia -45,904 -349,698 -429,017 

Training Site Ethan Allen Range Chittenden Vermont -30,214 -210,572 -79,165 

Travis AFB Solano California -3,425 42,450 95,386 

Tucson International Airport Air Guard Sta Pima Arizona -36,128 -262,791 -416,775 

Tyndall AFB Bay Florida -38,706 -256,079 -325,062 

U.S. Air Force Academy El Paso Colorado -39,384 -381,037 -374,692 

U.S. Air Force Plant 42 Los Angeles California 16,105 237,268 334,509 

Utah Air National Guard Salt Lake Utah -67,683 -707,447 -785,773 

Vance AFB Garfield Oklahoma -64,513 -605,245 -630,595 

Vandenberg AFB Santa Barbara California -4,533 56,183 125,123 
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Volk Field Air National Guard Base Juneau Wisconsin -62,572 -607,759 -565,251 

Volk Field Air National Guard Base (Hardwood 
Range) 

Juneau Wisconsin 
-62,572 -607,759 -565,251 

Westover AFB Hampden Massachusetts -22,366 -102,185 59,855 

Whiteman AFB Johnson Missouri -58,808 -559,639 -634,816 

Wright-Patterson AFB Greene Ohio -73,727 -737,095 -751,771 

Yankee Target Range McMullen Texas -48,248 -394,626 -476,599 

Youngstown-Warren Air Reserve Sta Trumbull Ohio -86,741 -881,822 -920,381 
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